aboutsummaryrefslogtreecommitdiff
path: root/Documentation/arm64/pointer-authentication.rst
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/arm64/pointer-authentication.rst
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to '')
-rw-r--r--Documentation/arm64/pointer-authentication.rst142
1 files changed, 142 insertions, 0 deletions
diff --git a/Documentation/arm64/pointer-authentication.rst b/Documentation/arm64/pointer-authentication.rst
new file mode 100644
index 000000000..e5dad2e40
--- /dev/null
+++ b/Documentation/arm64/pointer-authentication.rst
@@ -0,0 +1,142 @@
+=======================================
+Pointer authentication in AArch64 Linux
+=======================================
+
+Author: Mark Rutland <mark.rutland@arm.com>
+
+Date: 2017-07-19
+
+This document briefly describes the provision of pointer authentication
+functionality in AArch64 Linux.
+
+
+Architecture overview
+---------------------
+
+The ARMv8.3 Pointer Authentication extension adds primitives that can be
+used to mitigate certain classes of attack where an attacker can corrupt
+the contents of some memory (e.g. the stack).
+
+The extension uses a Pointer Authentication Code (PAC) to determine
+whether pointers have been modified unexpectedly. A PAC is derived from
+a pointer, another value (such as the stack pointer), and a secret key
+held in system registers.
+
+The extension adds instructions to insert a valid PAC into a pointer,
+and to verify/remove the PAC from a pointer. The PAC occupies a number
+of high-order bits of the pointer, which varies dependent on the
+configured virtual address size and whether pointer tagging is in use.
+
+A subset of these instructions have been allocated from the HINT
+encoding space. In the absence of the extension (or when disabled),
+these instructions behave as NOPs. Applications and libraries using
+these instructions operate correctly regardless of the presence of the
+extension.
+
+The extension provides five separate keys to generate PACs - two for
+instruction addresses (APIAKey, APIBKey), two for data addresses
+(APDAKey, APDBKey), and one for generic authentication (APGAKey).
+
+
+Basic support
+-------------
+
+When CONFIG_ARM64_PTR_AUTH is selected, and relevant HW support is
+present, the kernel will assign random key values to each process at
+exec*() time. The keys are shared by all threads within the process, and
+are preserved across fork().
+
+Presence of address authentication functionality is advertised via
+HWCAP_PACA, and generic authentication functionality via HWCAP_PACG.
+
+The number of bits that the PAC occupies in a pointer is 55 minus the
+virtual address size configured by the kernel. For example, with a
+virtual address size of 48, the PAC is 7 bits wide.
+
+When ARM64_PTR_AUTH_KERNEL is selected, the kernel will be compiled
+with HINT space pointer authentication instructions protecting
+function returns. Kernels built with this option will work on hardware
+with or without pointer authentication support.
+
+In addition to exec(), keys can also be reinitialized to random values
+using the PR_PAC_RESET_KEYS prctl. A bitmask of PR_PAC_APIAKEY,
+PR_PAC_APIBKEY, PR_PAC_APDAKEY, PR_PAC_APDBKEY and PR_PAC_APGAKEY
+specifies which keys are to be reinitialized; specifying 0 means "all
+keys".
+
+
+Debugging
+---------
+
+When CONFIG_ARM64_PTR_AUTH is selected, and HW support for address
+authentication is present, the kernel will expose the position of TTBR0
+PAC bits in the NT_ARM_PAC_MASK regset (struct user_pac_mask), which
+userspace can acquire via PTRACE_GETREGSET.
+
+The regset is exposed only when HWCAP_PACA is set. Separate masks are
+exposed for data pointers and instruction pointers, as the set of PAC
+bits can vary between the two. Note that the masks apply to TTBR0
+addresses, and are not valid to apply to TTBR1 addresses (e.g. kernel
+pointers).
+
+Additionally, when CONFIG_CHECKPOINT_RESTORE is also set, the kernel
+will expose the NT_ARM_PACA_KEYS and NT_ARM_PACG_KEYS regsets (struct
+user_pac_address_keys and struct user_pac_generic_keys). These can be
+used to get and set the keys for a thread.
+
+
+Virtualization
+--------------
+
+Pointer authentication is enabled in KVM guest when each virtual cpu is
+initialised by passing flags KVM_ARM_VCPU_PTRAUTH_[ADDRESS/GENERIC] and
+requesting these two separate cpu features to be enabled. The current KVM
+guest implementation works by enabling both features together, so both
+these userspace flags are checked before enabling pointer authentication.
+The separate userspace flag will allow to have no userspace ABI changes
+if support is added in the future to allow these two features to be
+enabled independently of one another.
+
+As Arm Architecture specifies that Pointer Authentication feature is
+implemented along with the VHE feature so KVM arm64 ptrauth code relies
+on VHE mode to be present.
+
+Additionally, when these vcpu feature flags are not set then KVM will
+filter out the Pointer Authentication system key registers from
+KVM_GET/SET_REG_* ioctls and mask those features from cpufeature ID
+register. Any attempt to use the Pointer Authentication instructions will
+result in an UNDEFINED exception being injected into the guest.
+
+
+Enabling and disabling keys
+---------------------------
+
+The prctl PR_PAC_SET_ENABLED_KEYS allows the user program to control which
+PAC keys are enabled in a particular task. It takes two arguments, the
+first being a bitmask of PR_PAC_APIAKEY, PR_PAC_APIBKEY, PR_PAC_APDAKEY
+and PR_PAC_APDBKEY specifying which keys shall be affected by this prctl,
+and the second being a bitmask of the same bits specifying whether the key
+should be enabled or disabled. For example::
+
+ prctl(PR_PAC_SET_ENABLED_KEYS,
+ PR_PAC_APIAKEY | PR_PAC_APIBKEY | PR_PAC_APDAKEY | PR_PAC_APDBKEY,
+ PR_PAC_APIBKEY, 0, 0);
+
+disables all keys except the IB key.
+
+The main reason why this is useful is to enable a userspace ABI that uses PAC
+instructions to sign and authenticate function pointers and other pointers
+exposed outside of the function, while still allowing binaries conforming to
+the ABI to interoperate with legacy binaries that do not sign or authenticate
+pointers.
+
+The idea is that a dynamic loader or early startup code would issue this
+prctl very early after establishing that a process may load legacy binaries,
+but before executing any PAC instructions.
+
+For compatibility with previous kernel versions, processes start up with IA,
+IB, DA and DB enabled, and are reset to this state on exec(). Processes created
+via fork() and clone() inherit the key enabled state from the calling process.
+
+It is recommended to avoid disabling the IA key, as this has higher performance
+overhead than disabling any of the other keys.