diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/hwmon/asc7621.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
-rw-r--r-- | Documentation/hwmon/asc7621.rst | 326 |
1 files changed, 326 insertions, 0 deletions
diff --git a/Documentation/hwmon/asc7621.rst b/Documentation/hwmon/asc7621.rst new file mode 100644 index 000000000..b5a9fad0f --- /dev/null +++ b/Documentation/hwmon/asc7621.rst @@ -0,0 +1,326 @@ +===================== +Kernel driver asc7621 +===================== + +Supported chips: + + Andigilog aSC7621 and aSC7621a + + Prefix: 'asc7621' + + Addresses scanned: I2C 0x2c, 0x2d, 0x2e + + Datasheet: http://www.fairview5.com/linux/asc7621/asc7621.pdf + +Author: + George Joseph + +Description provided by Dave Pivin @ Andigilog: + +Andigilog has both the PECI and pre-PECI versions of the Heceta-6, as +Intel calls them. Heceta-6e has high frequency PWM and Heceta-6p has +added PECI and a 4th thermal zone. The Andigilog aSC7611 is the +Heceta-6e part and aSC7621 is the Heceta-6p part. They are both in +volume production, shipping to Intel and their subs. + +We have enhanced both parts relative to the governing Intel +specification. First enhancement is temperature reading resolution. We +have used registers below 20h for vendor-specific functions in addition +to those in the Intel-specified vendor range. + +Our conversion process produces a result that is reported as two bytes. +The fan speed control uses this finer value to produce a "step-less" fan +PWM output. These two bytes are "read-locked" to guarantee that once a +high or low byte is read, the other byte is locked-in until after the +next read of any register. So to get an atomic reading, read high or low +byte, then the very next read should be the opposite byte. Our data +sheet says 10-bits of resolution, although you may find the lower bits +are active, they are not necessarily reliable or useful externally. We +chose not to mask them. + +We employ significant filtering that is user tunable as described in the +data sheet. Our temperature reports and fan PWM outputs are very smooth +when compared to the competition, in addition to the higher resolution +temperature reports. The smoother PWM output does not require user +intervention. + +We offer GPIO features on the former VID pins. These are open-drain +outputs or inputs and may be used as general purpose I/O or as alarm +outputs that are based on temperature limits. These are in 19h and 1Ah. + +We offer flexible mapping of temperature readings to thermal zones. Any +temperature may be mapped to any zone, which has a default assignment +that follows Intel's specs. + +Since there is a fan to zone assignment that allows for the "hotter" of +a set of zones to control the PWM of an individual fan, but there is no +indication to the user, we have added an indicator that shows which zone +is currently controlling the PWM for a given fan. This is in register +00h. + +Both remote diode temperature readings may be given an offset value such +that the reported reading as well as the temperature used to determine +PWM may be offset for system calibration purposes. + +PECI Extended configuration allows for having more than two domains per +PECI address and also provides an enabling function for each PECI +address. One could use our flexible zone assignment to have a zone +assigned to up to 4 PECI addresses. This is not possible in the default +Intel configuration. This would be useful in multi-CPU systems with +individual fans on each that would benefit from individual fan control. +This is in register 0Eh. + +The tachometer measurement system is flexible and able to adapt to many +fan types. We can also support pulse-stretched PWM so that 3-wire fans +may be used. These characteristics are in registers 04h to 07h. + +Finally, we have added a tach disable function that turns off the tach +measurement system for individual tachs in order to save power. That is +in register 75h. + +-------------------------------------------------------------------------- + +aSC7621 Product Description +=========================== + +The aSC7621 has a two wire digital interface compatible with SMBus 2.0. +Using a 10-bit ADC, the aSC7621 measures the temperature of two remote diode +connected transistors as well as its own die. Support for Platform +Environmental Control Interface (PECI) is included. + +Using temperature information from these four zones, an automatic fan speed +control algorithm is employed to minimize acoustic impact while achieving +recommended CPU temperature under varying operational loads. + +To set fan speed, the aSC7621 has three independent pulse width modulation +(PWM) outputs that are controlled by one, or a combination of three, +temperature zones. Both high- and low-frequency PWM ranges are supported. + +The aSC7621 also includes a digital filter that can be invoked to smooth +temperature readings for better control of fan speed and minimum acoustic +impact. + +The aSC7621 has tachometer inputs to measure fan speed on up to four fans. +Limit and status registers for all measured values are included to alert +the system host that any measurements are outside of programmed limits +via status registers. + +System voltages of VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard power are +monitored efficiently with internal scaling resistors. + +Features +-------- + +- Supports PECI interface and monitors internal and remote thermal diodes +- 2-wire, SMBus 2.0 compliant, serial interface +- 10-bit ADC +- Monitors VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard/processor supplies +- Programmable autonomous fan control based on temperature readings +- Noise filtering of temperature reading for fan speed control +- 0.25C digital temperature sensor resolution +- 3 PWM fan speed control outputs for 2-, 3- or 4-wire fans and up to 4 fan + tachometer inputs +- Enhanced measured temperature to Temperature Zone assignment. +- Provides high and low PWM frequency ranges +- 3 GPIO pins for custom use +- 24-Lead QSOP package + +Configuration Notes +=================== + +Except where noted below, the sysfs entries created by this driver follow +the standards defined in "sysfs-interface". + +temp1_source + = =============================================== + 0 (default) peci_legacy = 0, Remote 1 Temperature + peci_legacy = 1, PECI Processor Temperature 0 + 1 Remote 1 Temperature + 2 Remote 2 Temperature + 3 Internal Temperature + 4 PECI Processor Temperature 0 + 5 PECI Processor Temperature 1 + 6 PECI Processor Temperature 2 + 7 PECI Processor Temperature 3 + = =============================================== + +temp2_source + = =============================================== + 0 (default) Internal Temperature + 1 Remote 1 Temperature + 2 Remote 2 Temperature + 3 Internal Temperature + 4 PECI Processor Temperature 0 + 5 PECI Processor Temperature 1 + 6 PECI Processor Temperature 2 + 7 PECI Processor Temperature 3 + = =============================================== + +temp3_source + = =============================================== + 0 (default) Remote 2 Temperature + 1 Remote 1 Temperature + 2 Remote 2 Temperature + 3 Internal Temperature + 4 PECI Processor Temperature 0 + 5 PECI Processor Temperature 1 + 6 PECI Processor Temperature 2 + 7 PECI Processor Temperature 3 + = =============================================== + +temp4_source + = =============================================== + 0 (default) peci_legacy = 0, PECI Processor Temperature 0 + peci_legacy = 1, Remote 1 Temperature + 1 Remote 1 Temperature + 2 Remote 2 Temperature + 3 Internal Temperature + 4 PECI Processor Temperature 0 + 5 PECI Processor Temperature 1 + 6 PECI Processor Temperature 2 + 7 PECI Processor Temperature 3 + = =============================================== + +temp[1-4]_smoothing_enable / temp[1-4]_smoothing_time + Smooths spikes in temp readings caused by noise. + Valid values in milliseconds are: + + * 35000 + * 17600 + * 11800 + * 7000 + * 4400 + * 3000 + * 1600 + * 800 + +temp[1-4]_crit + When the corresponding zone temperature reaches this value, + ALL pwm outputs will got to 100%. + +temp[5-8]_input / temp[5-8]_enable + The aSC7621 can also read temperatures provided by the processor + via the PECI bus. Usually these are "core" temps and are relative + to the point where the automatic thermal control circuit starts + throttling. This means that these are usually negative numbers. + +pwm[1-3]_enable + =============== ======================================================== + 0 Fan off. + 1 Fan on manual control. + 2 Fan on automatic control and will run at the minimum pwm + if the temperature for the zone is below the minimum. + 3 Fan on automatic control but will be off if the + temperature for the zone is below the minimum. + 4-254 Ignored. + 255 Fan on full. + =============== ======================================================== + +pwm[1-3]_auto_channels + Bitmap as described in sysctl-interface with the following + exceptions... + + Only the following combination of zones (and their corresponding masks) + are valid: + + * 1 + * 2 + * 3 + * 2,3 + * 1,2,3 + * 4 + * 1,2,3,4 + + * Special values: + + == ====================== + 0 Disabled. + 16 Fan on manual control. + 31 Fan on full. + == ====================== + + +pwm[1-3]_invert + When set, inverts the meaning of pwm[1-3]. + i.e. when pwm = 0, the fan will be on full and + when pwm = 255 the fan will be off. + +pwm[1-3]_freq + PWM frequency in Hz + Valid values in Hz are: + + * 10 + * 15 + * 23 + * 30 (default) + * 38 + * 47 + * 62 + * 94 + * 23000 + * 24000 + * 25000 + * 26000 + * 27000 + * 28000 + * 29000 + * 30000 + + Setting any other value will be ignored. + +peci_enable + Enables or disables PECI + +peci_avg + Input filter average time. + + * 0 0 Sec. (no Smoothing) (default) + * 1 0.25 Sec. + * 2 0.5 Sec. + * 3 1.0 Sec. + * 4 2.0 Sec. + * 5 4.0 Sec. + * 6 8.0 Sec. + * 7 0.0 Sec. + +peci_legacy + = ============================================ + 0 Standard Mode (default) + Remote Diode 1 reading is associated with + Temperature Zone 1, PECI is associated with + Zone 4 + + 1 Legacy Mode + PECI is associated with Temperature Zone 1, + Remote Diode 1 is associated with Zone 4 + = ============================================ + +peci_diode + Diode filter + + = ==================== + 0 0.25 Sec. + 1 1.1 Sec. + 2 2.4 Sec. (default) + 3 3.4 Sec. + 4 5.0 Sec. + 5 6.8 Sec. + 6 10.2 Sec. + 7 16.4 Sec. + = ==================== + +peci_4domain + Four domain enable + + = =============================================== + 0 1 or 2 Domains for enabled processors (default) + 1 3 or 4 Domains for enabled processors + = =============================================== + +peci_domain + Domain + + = ================================================== + 0 Processor contains a single domain (0) (default) + 1 Processor contains two domains (0,1) + = ================================================== |