diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/trace/boottime-trace.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
-rw-r--r-- | Documentation/trace/boottime-trace.rst | 301 |
1 files changed, 301 insertions, 0 deletions
diff --git a/Documentation/trace/boottime-trace.rst b/Documentation/trace/boottime-trace.rst new file mode 100644 index 000000000..d59459720 --- /dev/null +++ b/Documentation/trace/boottime-trace.rst @@ -0,0 +1,301 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================= +Boot-time tracing +================= + +:Author: Masami Hiramatsu <mhiramat@kernel.org> + +Overview +======== + +Boot-time tracing allows users to trace boot-time process including +device initialization with full features of ftrace including per-event +filter and actions, histograms, kprobe-events and synthetic-events, +and trace instances. +Since kernel command line is not enough to control these complex features, +this uses bootconfig file to describe tracing feature programming. + +Options in the Boot Config +========================== + +Here is the list of available options list for boot time tracing in +boot config file [1]_. All options are under "ftrace." or "kernel." +prefix. See kernel parameters for the options which starts +with "kernel." prefix [2]_. + +.. [1] See :ref:`Documentation/admin-guide/bootconfig.rst <bootconfig>` +.. [2] See :ref:`Documentation/admin-guide/kernel-parameters.rst <kernelparameters>` + +Ftrace Global Options +--------------------- + +Ftrace global options have "kernel." prefix in boot config, which means +these options are passed as a part of kernel legacy command line. + +kernel.tp_printk + Output trace-event data on printk buffer too. + +kernel.dump_on_oops [= MODE] + Dump ftrace on Oops. If MODE = 1 or omitted, dump trace buffer + on all CPUs. If MODE = 2, dump a buffer on a CPU which kicks Oops. + +kernel.traceoff_on_warning + Stop tracing if WARN_ON() occurs. + +kernel.fgraph_max_depth = MAX_DEPTH + Set MAX_DEPTH to maximum depth of fgraph tracer. + +kernel.fgraph_filters = FILTER[, FILTER2...] + Add fgraph tracing function filters. + +kernel.fgraph_notraces = FILTER[, FILTER2...] + Add fgraph non-tracing function filters. + + +Ftrace Per-instance Options +--------------------------- + +These options can be used for each instance including global ftrace node. + +ftrace.[instance.INSTANCE.]options = OPT1[, OPT2[...]] + Enable given ftrace options. + +ftrace.[instance.INSTANCE.]tracing_on = 0|1 + Enable/Disable tracing on this instance when starting boot-time tracing. + (you can enable it by the "traceon" event trigger action) + +ftrace.[instance.INSTANCE.]trace_clock = CLOCK + Set given CLOCK to ftrace's trace_clock. + +ftrace.[instance.INSTANCE.]buffer_size = SIZE + Configure ftrace buffer size to SIZE. You can use "KB" or "MB" + for that SIZE. + +ftrace.[instance.INSTANCE.]alloc_snapshot + Allocate snapshot buffer. + +ftrace.[instance.INSTANCE.]cpumask = CPUMASK + Set CPUMASK as trace cpu-mask. + +ftrace.[instance.INSTANCE.]events = EVENT[, EVENT2[...]] + Enable given events on boot. You can use a wild card in EVENT. + +ftrace.[instance.INSTANCE.]tracer = TRACER + Set TRACER to current tracer on boot. (e.g. function) + +ftrace.[instance.INSTANCE.]ftrace.filters + This will take an array of tracing function filter rules. + +ftrace.[instance.INSTANCE.]ftrace.notraces + This will take an array of NON-tracing function filter rules. + + +Ftrace Per-Event Options +------------------------ + +These options are setting per-event options. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.enable + Enable GROUP:EVENT tracing. + +ftrace.[instance.INSTANCE.]event.GROUP.enable + Enable all event tracing within GROUP. + +ftrace.[instance.INSTANCE.]event.enable + Enable all event tracing. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.filter = FILTER + Set FILTER rule to the GROUP:EVENT. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.actions = ACTION[, ACTION2[...]] + Set ACTIONs to the GROUP:EVENT. + +ftrace.[instance.INSTANCE.]event.kprobes.EVENT.probes = PROBE[, PROBE2[...]] + Defines new kprobe event based on PROBEs. It is able to define + multiple probes on one event, but those must have same type of + arguments. This option is available only for the event which + group name is "kprobes". + +ftrace.[instance.INSTANCE.]event.synthetic.EVENT.fields = FIELD[, FIELD2[...]] + Defines new synthetic event with FIELDs. Each field should be + "type varname". + +Note that kprobe and synthetic event definitions can be written under +instance node, but those are also visible from other instances. So please +take care for event name conflict. + +Ftrace Histogram Options +------------------------ + +Since it is too long to write a histogram action as a string for per-event +action option, there are tree-style options under per-event 'hist' subkey +for the histogram actions. For the detail of the each parameter, +please read the event histogram document (Documentation/trace/histogram.rst) + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]keys = KEY1[, KEY2[...]] + Set histogram key parameters. (Mandatory) + The 'N' is a digit string for the multiple histogram. You can omit it + if there is one histogram on the event. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]values = VAL1[, VAL2[...]] + Set histogram value parameters. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]sort = SORT1[, SORT2[...]] + Set histogram sort parameter options. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]size = NR_ENTRIES + Set histogram size (number of entries). + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]name = NAME + Set histogram name. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]var.VARIABLE = EXPR + Define a new VARIABLE by EXPR expression. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]<pause|continue|clear> + Set histogram control parameter. You can set one of them. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]onmatch.[M.]event = GROUP.EVENT + Set histogram 'onmatch' handler matching event parameter. + The 'M' is a digit string for the multiple 'onmatch' handler. You can omit it + if there is one 'onmatch' handler on this histogram. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]onmatch.[M.]trace = EVENT[, ARG1[...]] + Set histogram 'trace' action for 'onmatch'. + EVENT must be a synthetic event name, and ARG1... are parameters + for that event. Mandatory if 'onmatch.event' option is set. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]onmax.[M.]var = VAR + Set histogram 'onmax' handler variable parameter. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]onchange.[M.]var = VAR + Set histogram 'onchange' handler variable parameter. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]<onmax|onchange>.[M.]save = ARG1[, ARG2[...]] + Set histogram 'save' action parameters for 'onmax' or 'onchange' handler. + This option or below 'snapshot' option is mandatory if 'onmax.var' or + 'onchange.var' option is set. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.[N.]<onmax|onchange>.[M.]snapshot + Set histogram 'snapshot' action for 'onmax' or 'onchange' handler. + This option or above 'save' option is mandatory if 'onmax.var' or + 'onchange.var' option is set. + +ftrace.[instance.INSTANCE.]event.GROUP.EVENT.hist.filter = FILTER_EXPR + Set histogram filter expression. You don't need 'if' in the FILTER_EXPR. + +Note that this 'hist' option can conflict with the per-event 'actions' +option if the 'actions' option has a histogram action. + + +When to Start +============= + +All boot-time tracing options starting with ``ftrace`` will be enabled at the +end of core_initcall. This means you can trace the events from postcore_initcall. +Most of the subsystems and architecture dependent drivers will be initialized +after that (arch_initcall or subsys_initcall). Thus, you can trace those with +boot-time tracing. +If you want to trace events before core_initcall, you can use the options +starting with ``kernel``. Some of them will be enabled eariler than the initcall +processing (for example,. ``kernel.ftrace=function`` and ``kernel.trace_event`` +will start before the initcall.) + + +Examples +======== + +For example, to add filter and actions for each event, define kprobe +events, and synthetic events with histogram, write a boot config like +below:: + + ftrace.event { + task.task_newtask { + filter = "pid < 128" + enable + } + kprobes.vfs_read { + probes = "vfs_read $arg1 $arg2" + filter = "common_pid < 200" + enable + } + synthetic.initcall_latency { + fields = "unsigned long func", "u64 lat" + hist { + keys = func.sym, lat + values = lat + sort = lat + } + } + initcall.initcall_start.hist { + keys = func + var.ts0 = common_timestamp.usecs + } + initcall.initcall_finish.hist { + keys = func + var.lat = common_timestamp.usecs - $ts0 + onmatch { + event = initcall.initcall_start + trace = initcall_latency, func, $lat + } + } + } + +Also, boot-time tracing supports "instance" node, which allows us to run +several tracers for different purpose at once. For example, one tracer +is for tracing functions starting with "user\_", and others tracing +"kernel\_" functions, you can write boot config as below:: + + ftrace.instance { + foo { + tracer = "function" + ftrace.filters = "user_*" + } + bar { + tracer = "function" + ftrace.filters = "kernel_*" + } + } + +The instance node also accepts event nodes so that each instance +can customize its event tracing. + +With the trigger action and kprobes, you can trace function-graph while +a function is called. For example, this will trace all function calls in +the pci_proc_init():: + + ftrace { + tracing_on = 0 + tracer = function_graph + event.kprobes { + start_event { + probes = "pci_proc_init" + actions = "traceon" + } + end_event { + probes = "pci_proc_init%return" + actions = "traceoff" + } + } + } + + +This boot-time tracing also supports ftrace kernel parameters via boot +config. +For example, following kernel parameters:: + + trace_options=sym-addr trace_event=initcall:* tp_printk trace_buf_size=1M ftrace=function ftrace_filter="vfs*" + +This can be written in boot config like below:: + + kernel { + trace_options = sym-addr + trace_event = "initcall:*" + tp_printk + trace_buf_size = 1M + ftrace = function + ftrace_filter = "vfs*" + } + +Note that parameters start with "kernel" prefix instead of "ftrace". |