diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/trace/coresight/coresight-perf.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
-rw-r--r-- | Documentation/trace/coresight/coresight-perf.rst | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/Documentation/trace/coresight/coresight-perf.rst b/Documentation/trace/coresight/coresight-perf.rst new file mode 100644 index 000000000..d087aae7d --- /dev/null +++ b/Documentation/trace/coresight/coresight-perf.rst @@ -0,0 +1,158 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================ +CoreSight - Perf +================ + + :Author: Carsten Haitzler <carsten.haitzler@arm.com> + :Date: June 29th, 2022 + +Perf is able to locally access CoreSight trace data and store it to the +output perf data files. This data can then be later decoded to give the +instructions that were traced for debugging or profiling purposes. You +can log such data with a perf record command like:: + + perf record -e cs_etm//u testbinary + +This would run some test binary (testbinary) until it exits and record +a perf.data trace file. That file would have AUX sections if CoreSight +is working correctly. You can dump the content of this file as +readable text with a command like:: + + perf report --stdio --dump -i perf.data + +You should find some sections of this file have AUX data blocks like:: + + 0x1e78 [0x30]: PERF_RECORD_AUXTRACE size: 0x11dd0 offset: 0 ref: 0x1b614fc1061b0ad1 idx: 0 tid: 531230 cpu: -1 + + . ... CoreSight ETM Trace data: size 73168 bytes + Idx:0; ID:10; I_ASYNC : Alignment Synchronisation. + Idx:12; ID:10; I_TRACE_INFO : Trace Info.; INFO=0x0 { CC.0 } + Idx:17; ID:10; I_ADDR_L_64IS0 : Address, Long, 64 bit, IS0.; Addr=0x0000000000000000; + Idx:26; ID:10; I_TRACE_ON : Trace On. + Idx:27; ID:10; I_ADDR_CTXT_L_64IS0 : Address & Context, Long, 64 bit, IS0.; Addr=0x0000FFFFB6069140; Ctxt: AArch64,EL0, NS; + Idx:38; ID:10; I_ATOM_F6 : Atom format 6.; EEEEEEEEEEEEEEEEEEEEEEEE + Idx:39; ID:10; I_ATOM_F6 : Atom format 6.; EEEEEEEEEEEEEEEEEEEEEEEE + Idx:40; ID:10; I_ATOM_F6 : Atom format 6.; EEEEEEEEEEEEEEEEEEEEEEEE + Idx:41; ID:10; I_ATOM_F6 : Atom format 6.; EEEEEEEEEEEN + ... + +If you see these above, then your system is tracing CoreSight data +correctly. + +To compile perf with CoreSight support in the tools/perf directory do:: + + make CORESIGHT=1 + +This requires OpenCSD to build. You may install distribution packages +for the support such as libopencsd and libopencsd-dev or download it +and build yourself. Upstream OpenCSD is located at: + + https://github.com/Linaro/OpenCSD + +For complete information on building perf with CoreSight support and +more extensive usage look at: + + https://github.com/Linaro/OpenCSD/blob/master/HOWTO.md + + +Kernel CoreSight Support +------------------------ + +You will also want CoreSight support enabled in your kernel config. +Ensure it is enabled with:: + + CONFIG_CORESIGHT=y + +There are various other CoreSight options you probably also want +enabled like:: + + CONFIG_CORESIGHT_LINKS_AND_SINKS=y + CONFIG_CORESIGHT_LINK_AND_SINK_TMC=y + CONFIG_CORESIGHT_CATU=y + CONFIG_CORESIGHT_SINK_TPIU=y + CONFIG_CORESIGHT_SINK_ETBV10=y + CONFIG_CORESIGHT_SOURCE_ETM4X=y + CONFIG_CORESIGHT_CTI=y + CONFIG_CORESIGHT_CTI_INTEGRATION_REGS=y + +Please refer to the kernel configuration help for more information. + +Perf test - Verify kernel and userspace perf CoreSight work +----------------------------------------------------------- + +When you run perf test, it will do a lot of self tests. Some of those +tests will cover CoreSight (only if enabled and on ARM64). You +generally would run perf test from the tools/perf directory in the +kernel tree. Some tests will check some internal perf support like: + + Check Arm CoreSight trace data recording and synthesized samples + Check Arm SPE trace data recording and synthesized samples + +Some others will actually use perf record and some test binaries that +are in tests/shell/coresight and will collect traces to ensure a +minimum level of functionality is met. The scripts that launch these +tests are in the same directory. These will all look like: + + CoreSight / ASM Pure Loop + CoreSight / Memcpy 16k 10 Threads + CoreSight / Thread Loop 10 Threads - Check TID + etc. + +These perf record tests will not run if the tool binaries do not exist +in tests/shell/coresight/\*/ and will be skipped. If you do not have +CoreSight support in hardware then either do not build perf with +CoreSight support or remove these binaries in order to not have these +tests fail and have them skip instead. + +These tests will log historical results in the current working +directory (e.g. tools/perf) and will be named stats-\*.csv like: + + stats-asm_pure_loop-out.csv + stats-memcpy_thread-16k_10.csv + ... + +These statistic files log some aspects of the AUX data sections in +the perf data output counting some numbers of certain encodings (a +good way to know that it's working in a very simple way). One problem +with CoreSight is that given a large enough amount of data needing to +be logged, some of it can be lost due to the processor not waking up +in time to read out all the data from buffers etc.. You will notice +that the amount of data collected can vary a lot per run of perf test. +If you wish to see how this changes over time, simply run perf test +multiple times and all these csv files will have more and more data +appended to it that you can later examine, graph and otherwise use to +figure out if things have become worse or better. + +This means sometimes these tests fail as they don't capture all the +data needed. This is about tracking quality and amount of data +produced over time and to see when changes to the Linux kernel improve +quality of traces. + +Be aware that some of these tests take quite a while to run, specifically +in processing the perf data file and dumping contents to then examine what +is inside. + +You can change where these csv logs are stored by setting the +PERF_TEST_CORESIGHT_STATDIR environment variable before running perf +test like:: + + export PERF_TEST_CORESIGHT_STATDIR=/var/tmp + perf test + +They will also store resulting perf output data in the current +directory for later inspection like:: + + perf-asm_pure_loop-out.data + perf-memcpy_thread-16k_10.data + ... + +You can alter where the perf data files are stored by setting the +PERF_TEST_CORESIGHT_DATADIR environment variable such as:: + + PERF_TEST_CORESIGHT_DATADIR=/var/tmp + perf test + +You may wish to set these above environment variables if you wish to +keep the output of tests outside of the current working directory for +longer term storage and examination. |