diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/virt/kvm/x86/msr.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
-rw-r--r-- | Documentation/virt/kvm/x86/msr.rst | 391 |
1 files changed, 391 insertions, 0 deletions
diff --git a/Documentation/virt/kvm/x86/msr.rst b/Documentation/virt/kvm/x86/msr.rst new file mode 100644 index 000000000..9315fc385 --- /dev/null +++ b/Documentation/virt/kvm/x86/msr.rst @@ -0,0 +1,391 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================= +KVM-specific MSRs +================= + +:Author: Glauber Costa <glommer@redhat.com>, Red Hat Inc, 2010 + +KVM makes use of some custom MSRs to service some requests. + +Custom MSRs have a range reserved for them, that goes from +0x4b564d00 to 0x4b564dff. There are MSRs outside this area, +but they are deprecated and their use is discouraged. + +Custom MSR list +--------------- + +The current supported Custom MSR list is: + +MSR_KVM_WALL_CLOCK_NEW: + 0x4b564d00 + +data: + 4-byte alignment physical address of a memory area which must be + in guest RAM. This memory is expected to hold a copy of the following + structure:: + + struct pvclock_wall_clock { + u32 version; + u32 sec; + u32 nsec; + } __attribute__((__packed__)); + + whose data will be filled in by the hypervisor. The hypervisor is only + guaranteed to update this data at the moment of MSR write. + Users that want to reliably query this information more than once have + to write more than once to this MSR. Fields have the following meanings: + + version: + guest has to check version before and after grabbing + time information and check that they are both equal and even. + An odd version indicates an in-progress update. + + sec: + number of seconds for wallclock at time of boot. + + nsec: + number of nanoseconds for wallclock at time of boot. + + In order to get the current wallclock time, the system_time from + MSR_KVM_SYSTEM_TIME_NEW needs to be added. + + Note that although MSRs are per-CPU entities, the effect of this + particular MSR is global. + + Availability of this MSR must be checked via bit 3 in 0x4000001 cpuid + leaf prior to usage. + +MSR_KVM_SYSTEM_TIME_NEW: + 0x4b564d01 + +data: + 4-byte aligned physical address of a memory area which must be in + guest RAM, plus an enable bit in bit 0. This memory is expected to hold + a copy of the following structure:: + + struct pvclock_vcpu_time_info { + u32 version; + u32 pad0; + u64 tsc_timestamp; + u64 system_time; + u32 tsc_to_system_mul; + s8 tsc_shift; + u8 flags; + u8 pad[2]; + } __attribute__((__packed__)); /* 32 bytes */ + + whose data will be filled in by the hypervisor periodically. Only one + write, or registration, is needed for each VCPU. The interval between + updates of this structure is arbitrary and implementation-dependent. + The hypervisor may update this structure at any time it sees fit until + anything with bit0 == 0 is written to it. + + Fields have the following meanings: + + version: + guest has to check version before and after grabbing + time information and check that they are both equal and even. + An odd version indicates an in-progress update. + + tsc_timestamp: + the tsc value at the current VCPU at the time + of the update of this structure. Guests can subtract this value + from current tsc to derive a notion of elapsed time since the + structure update. + + system_time: + a host notion of monotonic time, including sleep + time at the time this structure was last updated. Unit is + nanoseconds. + + tsc_to_system_mul: + multiplier to be used when converting + tsc-related quantity to nanoseconds + + tsc_shift: + shift to be used when converting tsc-related + quantity to nanoseconds. This shift will ensure that + multiplication with tsc_to_system_mul does not overflow. + A positive value denotes a left shift, a negative value + a right shift. + + The conversion from tsc to nanoseconds involves an additional + right shift by 32 bits. With this information, guests can + derive per-CPU time by doing:: + + time = (current_tsc - tsc_timestamp) + if (tsc_shift >= 0) + time <<= tsc_shift; + else + time >>= -tsc_shift; + time = (time * tsc_to_system_mul) >> 32 + time = time + system_time + + flags: + bits in this field indicate extended capabilities + coordinated between the guest and the hypervisor. Availability + of specific flags has to be checked in 0x40000001 cpuid leaf. + Current flags are: + + + +-----------+--------------+----------------------------------+ + | flag bit | cpuid bit | meaning | + +-----------+--------------+----------------------------------+ + | | | time measures taken across | + | 0 | 24 | multiple cpus are guaranteed to | + | | | be monotonic | + +-----------+--------------+----------------------------------+ + | | | guest vcpu has been paused by | + | 1 | N/A | the host | + | | | See 4.70 in api.txt | + +-----------+--------------+----------------------------------+ + + Availability of this MSR must be checked via bit 3 in 0x4000001 cpuid + leaf prior to usage. + + +MSR_KVM_WALL_CLOCK: + 0x11 + +data and functioning: + same as MSR_KVM_WALL_CLOCK_NEW. Use that instead. + + This MSR falls outside the reserved KVM range and may be removed in the + future. Its usage is deprecated. + + Availability of this MSR must be checked via bit 0 in 0x4000001 cpuid + leaf prior to usage. + +MSR_KVM_SYSTEM_TIME: + 0x12 + +data and functioning: + same as MSR_KVM_SYSTEM_TIME_NEW. Use that instead. + + This MSR falls outside the reserved KVM range and may be removed in the + future. Its usage is deprecated. + + Availability of this MSR must be checked via bit 0 in 0x4000001 cpuid + leaf prior to usage. + + The suggested algorithm for detecting kvmclock presence is then:: + + if (!kvm_para_available()) /* refer to cpuid.txt */ + return NON_PRESENT; + + flags = cpuid_eax(0x40000001); + if (flags & 3) { + msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW; + msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW; + return PRESENT; + } else if (flags & 0) { + msr_kvm_system_time = MSR_KVM_SYSTEM_TIME; + msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK; + return PRESENT; + } else + return NON_PRESENT; + +MSR_KVM_ASYNC_PF_EN: + 0x4b564d02 + +data: + Asynchronous page fault (APF) control MSR. + + Bits 63-6 hold 64-byte aligned physical address of a 64 byte memory area + which must be in guest RAM and must be zeroed. This memory is expected + to hold a copy of the following structure:: + + struct kvm_vcpu_pv_apf_data { + /* Used for 'page not present' events delivered via #PF */ + __u32 flags; + + /* Used for 'page ready' events delivered via interrupt notification */ + __u32 token; + + __u8 pad[56]; + __u32 enabled; + }; + + Bits 5-4 of the MSR are reserved and should be zero. Bit 0 is set to 1 + when asynchronous page faults are enabled on the vcpu, 0 when disabled. + Bit 1 is 1 if asynchronous page faults can be injected when vcpu is in + cpl == 0. Bit 2 is 1 if asynchronous page faults are delivered to L1 as + #PF vmexits. Bit 2 can be set only if KVM_FEATURE_ASYNC_PF_VMEXIT is + present in CPUID. Bit 3 enables interrupt based delivery of 'page ready' + events. Bit 3 can only be set if KVM_FEATURE_ASYNC_PF_INT is present in + CPUID. + + 'Page not present' events are currently always delivered as synthetic + #PF exception. During delivery of these events APF CR2 register contains + a token that will be used to notify the guest when missing page becomes + available. Also, to make it possible to distinguish between real #PF and + APF, first 4 bytes of 64 byte memory location ('flags') will be written + to by the hypervisor at the time of injection. Only first bit of 'flags' + is currently supported, when set, it indicates that the guest is dealing + with asynchronous 'page not present' event. If during a page fault APF + 'flags' is '0' it means that this is regular page fault. Guest is + supposed to clear 'flags' when it is done handling #PF exception so the + next event can be delivered. + + Note, since APF 'page not present' events use the same exception vector + as regular page fault, guest must reset 'flags' to '0' before it does + something that can generate normal page fault. + + Bytes 5-7 of 64 byte memory location ('token') will be written to by the + hypervisor at the time of APF 'page ready' event injection. The content + of these bytes is a token which was previously delivered as 'page not + present' event. The event indicates the page in now available. Guest is + supposed to write '0' to 'token' when it is done handling 'page ready' + event and to write 1' to MSR_KVM_ASYNC_PF_ACK after clearing the location; + writing to the MSR forces KVM to re-scan its queue and deliver the next + pending notification. + + Note, MSR_KVM_ASYNC_PF_INT MSR specifying the interrupt vector for 'page + ready' APF delivery needs to be written to before enabling APF mechanism + in MSR_KVM_ASYNC_PF_EN or interrupt #0 can get injected. The MSR is + available if KVM_FEATURE_ASYNC_PF_INT is present in CPUID. + + Note, previously, 'page ready' events were delivered via the same #PF + exception as 'page not present' events but this is now deprecated. If + bit 3 (interrupt based delivery) is not set APF events are not delivered. + + If APF is disabled while there are outstanding APFs, they will + not be delivered. + + Currently 'page ready' APF events will be always delivered on the + same vcpu as 'page not present' event was, but guest should not rely on + that. + +MSR_KVM_STEAL_TIME: + 0x4b564d03 + +data: + 64-byte alignment physical address of a memory area which must be + in guest RAM, plus an enable bit in bit 0. This memory is expected to + hold a copy of the following structure:: + + struct kvm_steal_time { + __u64 steal; + __u32 version; + __u32 flags; + __u8 preempted; + __u8 u8_pad[3]; + __u32 pad[11]; + } + + whose data will be filled in by the hypervisor periodically. Only one + write, or registration, is needed for each VCPU. The interval between + updates of this structure is arbitrary and implementation-dependent. + The hypervisor may update this structure at any time it sees fit until + anything with bit0 == 0 is written to it. Guest is required to make sure + this structure is initialized to zero. + + Fields have the following meanings: + + version: + a sequence counter. In other words, guest has to check + this field before and after grabbing time information and make + sure they are both equal and even. An odd version indicates an + in-progress update. + + flags: + At this point, always zero. May be used to indicate + changes in this structure in the future. + + steal: + the amount of time in which this vCPU did not run, in + nanoseconds. Time during which the vcpu is idle, will not be + reported as steal time. + + preempted: + indicate the vCPU who owns this struct is running or + not. Non-zero values mean the vCPU has been preempted. Zero + means the vCPU is not preempted. NOTE, it is always zero if the + the hypervisor doesn't support this field. + +MSR_KVM_EOI_EN: + 0x4b564d04 + +data: + Bit 0 is 1 when PV end of interrupt is enabled on the vcpu; 0 + when disabled. Bit 1 is reserved and must be zero. When PV end of + interrupt is enabled (bit 0 set), bits 63-2 hold a 4-byte aligned + physical address of a 4 byte memory area which must be in guest RAM and + must be zeroed. + + The first, least significant bit of 4 byte memory location will be + written to by the hypervisor, typically at the time of interrupt + injection. Value of 1 means that guest can skip writing EOI to the apic + (using MSR or MMIO write); instead, it is sufficient to signal + EOI by clearing the bit in guest memory - this location will + later be polled by the hypervisor. + Value of 0 means that the EOI write is required. + + It is always safe for the guest to ignore the optimization and perform + the APIC EOI write anyway. + + Hypervisor is guaranteed to only modify this least + significant bit while in the current VCPU context, this means that + guest does not need to use either lock prefix or memory ordering + primitives to synchronise with the hypervisor. + + However, hypervisor can set and clear this memory bit at any time: + therefore to make sure hypervisor does not interrupt the + guest and clear the least significant bit in the memory area + in the window between guest testing it to detect + whether it can skip EOI apic write and between guest + clearing it to signal EOI to the hypervisor, + guest must both read the least significant bit in the memory area and + clear it using a single CPU instruction, such as test and clear, or + compare and exchange. + +MSR_KVM_POLL_CONTROL: + 0x4b564d05 + + Control host-side polling. + +data: + Bit 0 enables (1) or disables (0) host-side HLT polling logic. + + KVM guests can request the host not to poll on HLT, for example if + they are performing polling themselves. + +MSR_KVM_ASYNC_PF_INT: + 0x4b564d06 + +data: + Second asynchronous page fault (APF) control MSR. + + Bits 0-7: APIC vector for delivery of 'page ready' APF events. + Bits 8-63: Reserved + + Interrupt vector for asynchnonous 'page ready' notifications delivery. + The vector has to be set up before asynchronous page fault mechanism + is enabled in MSR_KVM_ASYNC_PF_EN. The MSR is only available if + KVM_FEATURE_ASYNC_PF_INT is present in CPUID. + +MSR_KVM_ASYNC_PF_ACK: + 0x4b564d07 + +data: + Asynchronous page fault (APF) acknowledgment. + + When the guest is done processing 'page ready' APF event and 'token' + field in 'struct kvm_vcpu_pv_apf_data' is cleared it is supposed to + write '1' to bit 0 of the MSR, this causes the host to re-scan its queue + and check if there are more notifications pending. The MSR is available + if KVM_FEATURE_ASYNC_PF_INT is present in CPUID. + +MSR_KVM_MIGRATION_CONTROL: + 0x4b564d08 + +data: + This MSR is available if KVM_FEATURE_MIGRATION_CONTROL is present in + CPUID. Bit 0 represents whether live migration of the guest is allowed. + + When a guest is started, bit 0 will be 0 if the guest has encrypted + memory and 1 if the guest does not have encrypted memory. If the + guest is communicating page encryption status to the host using the + ``KVM_HC_MAP_GPA_RANGE`` hypercall, it can set bit 0 in this MSR to + allow live migration of the guest. |