diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/virt/kvm/x86/running-nested-guests.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
-rw-r--r-- | Documentation/virt/kvm/x86/running-nested-guests.rst | 278 |
1 files changed, 278 insertions, 0 deletions
diff --git a/Documentation/virt/kvm/x86/running-nested-guests.rst b/Documentation/virt/kvm/x86/running-nested-guests.rst new file mode 100644 index 000000000..a27e6768d --- /dev/null +++ b/Documentation/virt/kvm/x86/running-nested-guests.rst @@ -0,0 +1,278 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============================== +Running nested guests with KVM +============================== + +A nested guest is the ability to run a guest inside another guest (it +can be KVM-based or a different hypervisor). The straightforward +example is a KVM guest that in turn runs on a KVM guest (the rest of +this document is built on this example):: + + .----------------. .----------------. + | | | | + | L2 | | L2 | + | (Nested Guest) | | (Nested Guest) | + | | | | + |----------------'--'----------------| + | | + | L1 (Guest Hypervisor) | + | KVM (/dev/kvm) | + | | + .------------------------------------------------------. + | L0 (Host Hypervisor) | + | KVM (/dev/kvm) | + |------------------------------------------------------| + | Hardware (with virtualization extensions) | + '------------------------------------------------------' + +Terminology: + +- L0 – level-0; the bare metal host, running KVM + +- L1 – level-1 guest; a VM running on L0; also called the "guest + hypervisor", as it itself is capable of running KVM. + +- L2 – level-2 guest; a VM running on L1, this is the "nested guest" + +.. note:: The above diagram is modelled after the x86 architecture; + s390x, ppc64 and other architectures are likely to have + a different design for nesting. + + For example, s390x always has an LPAR (LogicalPARtition) + hypervisor running on bare metal, adding another layer and + resulting in at least four levels in a nested setup — L0 (bare + metal, running the LPAR hypervisor), L1 (host hypervisor), L2 + (guest hypervisor), L3 (nested guest). + + This document will stick with the three-level terminology (L0, + L1, and L2) for all architectures; and will largely focus on + x86. + + +Use Cases +--------- + +There are several scenarios where nested KVM can be useful, to name a +few: + +- As a developer, you want to test your software on different operating + systems (OSes). Instead of renting multiple VMs from a Cloud + Provider, using nested KVM lets you rent a large enough "guest + hypervisor" (level-1 guest). This in turn allows you to create + multiple nested guests (level-2 guests), running different OSes, on + which you can develop and test your software. + +- Live migration of "guest hypervisors" and their nested guests, for + load balancing, disaster recovery, etc. + +- VM image creation tools (e.g. ``virt-install``, etc) often run + their own VM, and users expect these to work inside a VM. + +- Some OSes use virtualization internally for security (e.g. to let + applications run safely in isolation). + + +Enabling "nested" (x86) +----------------------- + +From Linux kernel v4.20 onwards, the ``nested`` KVM parameter is enabled +by default for Intel and AMD. (Though your Linux distribution might +override this default.) + +In case you are running a Linux kernel older than v4.19, to enable +nesting, set the ``nested`` KVM module parameter to ``Y`` or ``1``. To +persist this setting across reboots, you can add it in a config file, as +shown below: + +1. On the bare metal host (L0), list the kernel modules and ensure that + the KVM modules:: + + $ lsmod | grep -i kvm + kvm_intel 133627 0 + kvm 435079 1 kvm_intel + +2. Show information for ``kvm_intel`` module:: + + $ modinfo kvm_intel | grep -i nested + parm: nested:bool + +3. For the nested KVM configuration to persist across reboots, place the + below in ``/etc/modprobed/kvm_intel.conf`` (create the file if it + doesn't exist):: + + $ cat /etc/modprobe.d/kvm_intel.conf + options kvm-intel nested=y + +4. Unload and re-load the KVM Intel module:: + + $ sudo rmmod kvm-intel + $ sudo modprobe kvm-intel + +5. Verify if the ``nested`` parameter for KVM is enabled:: + + $ cat /sys/module/kvm_intel/parameters/nested + Y + +For AMD hosts, the process is the same as above, except that the module +name is ``kvm-amd``. + + +Additional nested-related kernel parameters (x86) +------------------------------------------------- + +If your hardware is sufficiently advanced (Intel Haswell processor or +higher, which has newer hardware virt extensions), the following +additional features will also be enabled by default: "Shadow VMCS +(Virtual Machine Control Structure)", APIC Virtualization on your bare +metal host (L0). Parameters for Intel hosts:: + + $ cat /sys/module/kvm_intel/parameters/enable_shadow_vmcs + Y + + $ cat /sys/module/kvm_intel/parameters/enable_apicv + Y + + $ cat /sys/module/kvm_intel/parameters/ept + Y + +.. note:: If you suspect your L2 (i.e. nested guest) is running slower, + ensure the above are enabled (particularly + ``enable_shadow_vmcs`` and ``ept``). + + +Starting a nested guest (x86) +----------------------------- + +Once your bare metal host (L0) is configured for nesting, you should be +able to start an L1 guest with:: + + $ qemu-kvm -cpu host [...] + +The above will pass through the host CPU's capabilities as-is to the +gues); or for better live migration compatibility, use a named CPU +model supported by QEMU. e.g.:: + + $ qemu-kvm -cpu Haswell-noTSX-IBRS,vmx=on + +then the guest hypervisor will subsequently be capable of running a +nested guest with accelerated KVM. + + +Enabling "nested" (s390x) +------------------------- + +1. On the host hypervisor (L0), enable the ``nested`` parameter on + s390x:: + + $ rmmod kvm + $ modprobe kvm nested=1 + +.. note:: On s390x, the kernel parameter ``hpage`` is mutually exclusive + with the ``nested`` paramter — i.e. to be able to enable + ``nested``, the ``hpage`` parameter *must* be disabled. + +2. The guest hypervisor (L1) must be provided with the ``sie`` CPU + feature — with QEMU, this can be done by using "host passthrough" + (via the command-line ``-cpu host``). + +3. Now the KVM module can be loaded in the L1 (guest hypervisor):: + + $ modprobe kvm + + +Live migration with nested KVM +------------------------------ + +Migrating an L1 guest, with a *live* nested guest in it, to another +bare metal host, works as of Linux kernel 5.3 and QEMU 4.2.0 for +Intel x86 systems, and even on older versions for s390x. + +On AMD systems, once an L1 guest has started an L2 guest, the L1 guest +should no longer be migrated or saved (refer to QEMU documentation on +"savevm"/"loadvm") until the L2 guest shuts down. Attempting to migrate +or save-and-load an L1 guest while an L2 guest is running will result in +undefined behavior. You might see a ``kernel BUG!`` entry in ``dmesg``, a +kernel 'oops', or an outright kernel panic. Such a migrated or loaded L1 +guest can no longer be considered stable or secure, and must be restarted. +Migrating an L1 guest merely configured to support nesting, while not +actually running L2 guests, is expected to function normally even on AMD +systems but may fail once guests are started. + +Migrating an L2 guest is always expected to succeed, so all the following +scenarios should work even on AMD systems: + +- Migrating a nested guest (L2) to another L1 guest on the *same* bare + metal host. + +- Migrating a nested guest (L2) to another L1 guest on a *different* + bare metal host. + +- Migrating a nested guest (L2) to a bare metal host. + +Reporting bugs from nested setups +----------------------------------- + +Debugging "nested" problems can involve sifting through log files across +L0, L1 and L2; this can result in tedious back-n-forth between the bug +reporter and the bug fixer. + +- Mention that you are in a "nested" setup. If you are running any kind + of "nesting" at all, say so. Unfortunately, this needs to be called + out because when reporting bugs, people tend to forget to even + *mention* that they're using nested virtualization. + +- Ensure you are actually running KVM on KVM. Sometimes people do not + have KVM enabled for their guest hypervisor (L1), which results in + them running with pure emulation or what QEMU calls it as "TCG", but + they think they're running nested KVM. Thus confusing "nested Virt" + (which could also mean, QEMU on KVM) with "nested KVM" (KVM on KVM). + +Information to collect (generic) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following is not an exhaustive list, but a very good starting point: + + - Kernel, libvirt, and QEMU version from L0 + + - Kernel, libvirt and QEMU version from L1 + + - QEMU command-line of L1 -- when using libvirt, you'll find it here: + ``/var/log/libvirt/qemu/instance.log`` + + - QEMU command-line of L2 -- as above, when using libvirt, get the + complete libvirt-generated QEMU command-line + + - ``cat /sys/cpuinfo`` from L0 + + - ``cat /sys/cpuinfo`` from L1 + + - ``lscpu`` from L0 + + - ``lscpu`` from L1 + + - Full ``dmesg`` output from L0 + + - Full ``dmesg`` output from L1 + +x86-specific info to collect +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Both the below commands, ``x86info`` and ``dmidecode``, should be +available on most Linux distributions with the same name: + + - Output of: ``x86info -a`` from L0 + + - Output of: ``x86info -a`` from L1 + + - Output of: ``dmidecode`` from L0 + + - Output of: ``dmidecode`` from L1 + +s390x-specific info to collect +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Along with the earlier mentioned generic details, the below is +also recommended: + + - ``/proc/sysinfo`` from L1; this will also include the info from L0 |