diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /arch/powerpc/sysdev/cpm2.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
-rw-r--r-- | arch/powerpc/sysdev/cpm2.c | 355 |
1 files changed, 355 insertions, 0 deletions
diff --git a/arch/powerpc/sysdev/cpm2.c b/arch/powerpc/sysdev/cpm2.c new file mode 100644 index 000000000..915f4d399 --- /dev/null +++ b/arch/powerpc/sysdev/cpm2.c @@ -0,0 +1,355 @@ +/* + * General Purpose functions for the global management of the + * 8260 Communication Processor Module. + * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com> + * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com) + * 2.3.99 Updates + * + * 2006 (c) MontaVista Software, Inc. + * Vitaly Bordug <vbordug@ru.mvista.com> + * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c + * + * This file is licensed under the terms of the GNU General Public License + * version 2. This program is licensed "as is" without any warranty of any + * kind, whether express or implied. + */ + +/* + * + * In addition to the individual control of the communication + * channels, there are a few functions that globally affect the + * communication processor. + * + * Buffer descriptors must be allocated from the dual ported memory + * space. The allocator for that is here. When the communication + * process is reset, we reclaim the memory available. There is + * currently no deallocator for this memory. + */ +#include <linux/errno.h> +#include <linux/sched.h> +#include <linux/kernel.h> +#include <linux/param.h> +#include <linux/string.h> +#include <linux/mm.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/of.h> + +#include <asm/io.h> +#include <asm/irq.h> +#include <asm/mpc8260.h> +#include <asm/page.h> +#include <asm/cpm2.h> +#include <asm/rheap.h> +#include <asm/fs_pd.h> + +#include <sysdev/fsl_soc.h> + +cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */ + +/* We allocate this here because it is used almost exclusively for + * the communication processor devices. + */ +cpm2_map_t __iomem *cpm2_immr; +EXPORT_SYMBOL(cpm2_immr); + +#define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount + of space for CPM as it is larger + than on PQ2 */ + +void __init cpm2_reset(void) +{ +#ifdef CONFIG_PPC_85xx + cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE); +#else + cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE); +#endif + + /* Tell everyone where the comm processor resides. + */ + cpmp = &cpm2_immr->im_cpm; + +#ifndef CONFIG_PPC_EARLY_DEBUG_CPM + /* Reset the CPM. + */ + cpm_command(CPM_CR_RST, 0); +#endif +} + +static DEFINE_SPINLOCK(cmd_lock); + +#define MAX_CR_CMD_LOOPS 10000 + +int cpm_command(u32 command, u8 opcode) +{ + int i, ret; + unsigned long flags; + + spin_lock_irqsave(&cmd_lock, flags); + + ret = 0; + out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG); + for (i = 0; i < MAX_CR_CMD_LOOPS; i++) + if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0) + goto out; + + printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__); + ret = -EIO; +out: + spin_unlock_irqrestore(&cmd_lock, flags); + return ret; +} +EXPORT_SYMBOL(cpm_command); + +/* Set a baud rate generator. This needs lots of work. There are + * eight BRGs, which can be connected to the CPM channels or output + * as clocks. The BRGs are in two different block of internal + * memory mapped space. + * The baud rate clock is the system clock divided by something. + * It was set up long ago during the initial boot phase and is + * given to us. + * Baud rate clocks are zero-based in the driver code (as that maps + * to port numbers). Documentation uses 1-based numbering. + */ +void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src) +{ + u32 __iomem *bp; + u32 val; + + /* This is good enough to get SMCs running..... + */ + if (brg < 4) { + bp = cpm2_map_size(im_brgc1, 16); + } else { + bp = cpm2_map_size(im_brgc5, 16); + brg -= 4; + } + bp += brg; + /* Round the clock divider to the nearest integer. */ + val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src; + if (div16) + val |= CPM_BRG_DIV16; + + out_be32(bp, val); + cpm2_unmap(bp); +} +EXPORT_SYMBOL(__cpm2_setbrg); + +int __init cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode) +{ + int ret = 0; + int shift; + int i, bits = 0; + cpmux_t __iomem *im_cpmux; + u32 __iomem *reg; + u32 mask = 7; + + u8 clk_map[][3] = { + {CPM_CLK_FCC1, CPM_BRG5, 0}, + {CPM_CLK_FCC1, CPM_BRG6, 1}, + {CPM_CLK_FCC1, CPM_BRG7, 2}, + {CPM_CLK_FCC1, CPM_BRG8, 3}, + {CPM_CLK_FCC1, CPM_CLK9, 4}, + {CPM_CLK_FCC1, CPM_CLK10, 5}, + {CPM_CLK_FCC1, CPM_CLK11, 6}, + {CPM_CLK_FCC1, CPM_CLK12, 7}, + {CPM_CLK_FCC2, CPM_BRG5, 0}, + {CPM_CLK_FCC2, CPM_BRG6, 1}, + {CPM_CLK_FCC2, CPM_BRG7, 2}, + {CPM_CLK_FCC2, CPM_BRG8, 3}, + {CPM_CLK_FCC2, CPM_CLK13, 4}, + {CPM_CLK_FCC2, CPM_CLK14, 5}, + {CPM_CLK_FCC2, CPM_CLK15, 6}, + {CPM_CLK_FCC2, CPM_CLK16, 7}, + {CPM_CLK_FCC3, CPM_BRG5, 0}, + {CPM_CLK_FCC3, CPM_BRG6, 1}, + {CPM_CLK_FCC3, CPM_BRG7, 2}, + {CPM_CLK_FCC3, CPM_BRG8, 3}, + {CPM_CLK_FCC3, CPM_CLK13, 4}, + {CPM_CLK_FCC3, CPM_CLK14, 5}, + {CPM_CLK_FCC3, CPM_CLK15, 6}, + {CPM_CLK_FCC3, CPM_CLK16, 7}, + {CPM_CLK_SCC1, CPM_BRG1, 0}, + {CPM_CLK_SCC1, CPM_BRG2, 1}, + {CPM_CLK_SCC1, CPM_BRG3, 2}, + {CPM_CLK_SCC1, CPM_BRG4, 3}, + {CPM_CLK_SCC1, CPM_CLK11, 4}, + {CPM_CLK_SCC1, CPM_CLK12, 5}, + {CPM_CLK_SCC1, CPM_CLK3, 6}, + {CPM_CLK_SCC1, CPM_CLK4, 7}, + {CPM_CLK_SCC2, CPM_BRG1, 0}, + {CPM_CLK_SCC2, CPM_BRG2, 1}, + {CPM_CLK_SCC2, CPM_BRG3, 2}, + {CPM_CLK_SCC2, CPM_BRG4, 3}, + {CPM_CLK_SCC2, CPM_CLK11, 4}, + {CPM_CLK_SCC2, CPM_CLK12, 5}, + {CPM_CLK_SCC2, CPM_CLK3, 6}, + {CPM_CLK_SCC2, CPM_CLK4, 7}, + {CPM_CLK_SCC3, CPM_BRG1, 0}, + {CPM_CLK_SCC3, CPM_BRG2, 1}, + {CPM_CLK_SCC3, CPM_BRG3, 2}, + {CPM_CLK_SCC3, CPM_BRG4, 3}, + {CPM_CLK_SCC3, CPM_CLK5, 4}, + {CPM_CLK_SCC3, CPM_CLK6, 5}, + {CPM_CLK_SCC3, CPM_CLK7, 6}, + {CPM_CLK_SCC3, CPM_CLK8, 7}, + {CPM_CLK_SCC4, CPM_BRG1, 0}, + {CPM_CLK_SCC4, CPM_BRG2, 1}, + {CPM_CLK_SCC4, CPM_BRG3, 2}, + {CPM_CLK_SCC4, CPM_BRG4, 3}, + {CPM_CLK_SCC4, CPM_CLK5, 4}, + {CPM_CLK_SCC4, CPM_CLK6, 5}, + {CPM_CLK_SCC4, CPM_CLK7, 6}, + {CPM_CLK_SCC4, CPM_CLK8, 7}, + }; + + im_cpmux = cpm2_map(im_cpmux); + + switch (target) { + case CPM_CLK_SCC1: + reg = &im_cpmux->cmx_scr; + shift = 24; + break; + case CPM_CLK_SCC2: + reg = &im_cpmux->cmx_scr; + shift = 16; + break; + case CPM_CLK_SCC3: + reg = &im_cpmux->cmx_scr; + shift = 8; + break; + case CPM_CLK_SCC4: + reg = &im_cpmux->cmx_scr; + shift = 0; + break; + case CPM_CLK_FCC1: + reg = &im_cpmux->cmx_fcr; + shift = 24; + break; + case CPM_CLK_FCC2: + reg = &im_cpmux->cmx_fcr; + shift = 16; + break; + case CPM_CLK_FCC3: + reg = &im_cpmux->cmx_fcr; + shift = 8; + break; + default: + printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n"); + return -EINVAL; + } + + for (i = 0; i < ARRAY_SIZE(clk_map); i++) { + if (clk_map[i][0] == target && clk_map[i][1] == clock) { + bits = clk_map[i][2]; + break; + } + } + if (i == ARRAY_SIZE(clk_map)) + ret = -EINVAL; + + bits <<= shift; + mask <<= shift; + + if (mode == CPM_CLK_RTX) { + bits |= bits << 3; + mask |= mask << 3; + } else if (mode == CPM_CLK_RX) { + bits <<= 3; + mask <<= 3; + } + + out_be32(reg, (in_be32(reg) & ~mask) | bits); + + cpm2_unmap(im_cpmux); + return ret; +} + +int __init cpm2_smc_clk_setup(enum cpm_clk_target target, int clock) +{ + int ret = 0; + int shift; + int i, bits = 0; + cpmux_t __iomem *im_cpmux; + u8 __iomem *reg; + u8 mask = 3; + + u8 clk_map[][3] = { + {CPM_CLK_SMC1, CPM_BRG1, 0}, + {CPM_CLK_SMC1, CPM_BRG7, 1}, + {CPM_CLK_SMC1, CPM_CLK7, 2}, + {CPM_CLK_SMC1, CPM_CLK9, 3}, + {CPM_CLK_SMC2, CPM_BRG2, 0}, + {CPM_CLK_SMC2, CPM_BRG8, 1}, + {CPM_CLK_SMC2, CPM_CLK4, 2}, + {CPM_CLK_SMC2, CPM_CLK15, 3}, + }; + + im_cpmux = cpm2_map(im_cpmux); + + switch (target) { + case CPM_CLK_SMC1: + reg = &im_cpmux->cmx_smr; + mask = 3; + shift = 4; + break; + case CPM_CLK_SMC2: + reg = &im_cpmux->cmx_smr; + mask = 3; + shift = 0; + break; + default: + printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n"); + return -EINVAL; + } + + for (i = 0; i < ARRAY_SIZE(clk_map); i++) { + if (clk_map[i][0] == target && clk_map[i][1] == clock) { + bits = clk_map[i][2]; + break; + } + } + if (i == ARRAY_SIZE(clk_map)) + ret = -EINVAL; + + bits <<= shift; + mask <<= shift; + + out_8(reg, (in_8(reg) & ~mask) | bits); + + cpm2_unmap(im_cpmux); + return ret; +} + +struct cpm2_ioports { + u32 dir, par, sor, odr, dat; + u32 res[3]; +}; + +void __init cpm2_set_pin(int port, int pin, int flags) +{ + struct cpm2_ioports __iomem *iop = + (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport; + + pin = 1 << (31 - pin); + + if (flags & CPM_PIN_OUTPUT) + setbits32(&iop[port].dir, pin); + else + clrbits32(&iop[port].dir, pin); + + if (!(flags & CPM_PIN_GPIO)) + setbits32(&iop[port].par, pin); + else + clrbits32(&iop[port].par, pin); + + if (flags & CPM_PIN_SECONDARY) + setbits32(&iop[port].sor, pin); + else + clrbits32(&iop[port].sor, pin); + + if (flags & CPM_PIN_OPENDRAIN) + setbits32(&iop[port].odr, pin); + else + clrbits32(&iop[port].odr, pin); +} |