aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/xen/time.c
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /arch/x86/xen/time.c
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to '')
-rw-r--r--arch/x86/xen/time.c661
1 files changed, 661 insertions, 0 deletions
diff --git a/arch/x86/xen/time.c b/arch/x86/xen/time.c
new file mode 100644
index 000000000..1d597364b
--- /dev/null
+++ b/arch/x86/xen/time.c
@@ -0,0 +1,661 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Xen time implementation.
+ *
+ * This is implemented in terms of a clocksource driver which uses
+ * the hypervisor clock as a nanosecond timebase, and a clockevent
+ * driver which uses the hypervisor's timer mechanism.
+ *
+ * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
+ */
+#include <linux/kernel.h>
+#include <linux/interrupt.h>
+#include <linux/clocksource.h>
+#include <linux/clockchips.h>
+#include <linux/gfp.h>
+#include <linux/slab.h>
+#include <linux/pvclock_gtod.h>
+#include <linux/timekeeper_internal.h>
+
+#include <asm/pvclock.h>
+#include <asm/xen/hypervisor.h>
+#include <asm/xen/hypercall.h>
+
+#include <xen/events.h>
+#include <xen/features.h>
+#include <xen/interface/xen.h>
+#include <xen/interface/vcpu.h>
+
+#include "xen-ops.h"
+
+/* Minimum amount of time until next clock event fires */
+#define TIMER_SLOP 100000
+
+static u64 xen_sched_clock_offset __read_mostly;
+
+/* Get the TSC speed from Xen */
+static unsigned long xen_tsc_khz(void)
+{
+ struct pvclock_vcpu_time_info *info =
+ &HYPERVISOR_shared_info->vcpu_info[0].time;
+
+ setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
+ return pvclock_tsc_khz(info);
+}
+
+static u64 xen_clocksource_read(void)
+{
+ struct pvclock_vcpu_time_info *src;
+ u64 ret;
+
+ preempt_disable_notrace();
+ src = &__this_cpu_read(xen_vcpu)->time;
+ ret = pvclock_clocksource_read(src);
+ preempt_enable_notrace();
+ return ret;
+}
+
+static u64 xen_clocksource_get_cycles(struct clocksource *cs)
+{
+ return xen_clocksource_read();
+}
+
+static noinstr u64 xen_sched_clock(void)
+{
+ struct pvclock_vcpu_time_info *src;
+ u64 ret;
+
+ preempt_disable_notrace();
+ src = &__this_cpu_read(xen_vcpu)->time;
+ ret = pvclock_clocksource_read_nowd(src);
+ ret -= xen_sched_clock_offset;
+ preempt_enable_notrace();
+ return ret;
+}
+
+static void xen_read_wallclock(struct timespec64 *ts)
+{
+ struct shared_info *s = HYPERVISOR_shared_info;
+ struct pvclock_wall_clock *wall_clock = &(s->wc);
+ struct pvclock_vcpu_time_info *vcpu_time;
+
+ vcpu_time = &get_cpu_var(xen_vcpu)->time;
+ pvclock_read_wallclock(wall_clock, vcpu_time, ts);
+ put_cpu_var(xen_vcpu);
+}
+
+static void xen_get_wallclock(struct timespec64 *now)
+{
+ xen_read_wallclock(now);
+}
+
+static int xen_set_wallclock(const struct timespec64 *now)
+{
+ return -ENODEV;
+}
+
+static int xen_pvclock_gtod_notify(struct notifier_block *nb,
+ unsigned long was_set, void *priv)
+{
+ /* Protected by the calling core code serialization */
+ static struct timespec64 next_sync;
+
+ struct xen_platform_op op;
+ struct timespec64 now;
+ struct timekeeper *tk = priv;
+ static bool settime64_supported = true;
+ int ret;
+
+ now.tv_sec = tk->xtime_sec;
+ now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
+
+ /*
+ * We only take the expensive HV call when the clock was set
+ * or when the 11 minutes RTC synchronization time elapsed.
+ */
+ if (!was_set && timespec64_compare(&now, &next_sync) < 0)
+ return NOTIFY_OK;
+
+again:
+ if (settime64_supported) {
+ op.cmd = XENPF_settime64;
+ op.u.settime64.mbz = 0;
+ op.u.settime64.secs = now.tv_sec;
+ op.u.settime64.nsecs = now.tv_nsec;
+ op.u.settime64.system_time = xen_clocksource_read();
+ } else {
+ op.cmd = XENPF_settime32;
+ op.u.settime32.secs = now.tv_sec;
+ op.u.settime32.nsecs = now.tv_nsec;
+ op.u.settime32.system_time = xen_clocksource_read();
+ }
+
+ ret = HYPERVISOR_platform_op(&op);
+
+ if (ret == -ENOSYS && settime64_supported) {
+ settime64_supported = false;
+ goto again;
+ }
+ if (ret < 0)
+ return NOTIFY_BAD;
+
+ /*
+ * Move the next drift compensation time 11 minutes
+ * ahead. That's emulating the sync_cmos_clock() update for
+ * the hardware RTC.
+ */
+ next_sync = now;
+ next_sync.tv_sec += 11 * 60;
+
+ return NOTIFY_OK;
+}
+
+static struct notifier_block xen_pvclock_gtod_notifier = {
+ .notifier_call = xen_pvclock_gtod_notify,
+};
+
+static int xen_cs_enable(struct clocksource *cs)
+{
+ vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
+ return 0;
+}
+
+static struct clocksource xen_clocksource __read_mostly = {
+ .name = "xen",
+ .rating = 400,
+ .read = xen_clocksource_get_cycles,
+ .mask = CLOCKSOURCE_MASK(64),
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS,
+ .enable = xen_cs_enable,
+};
+
+/*
+ Xen clockevent implementation
+
+ Xen has two clockevent implementations:
+
+ The old timer_op one works with all released versions of Xen prior
+ to version 3.0.4. This version of the hypervisor provides a
+ single-shot timer with nanosecond resolution. However, sharing the
+ same event channel is a 100Hz tick which is delivered while the
+ vcpu is running. We don't care about or use this tick, but it will
+ cause the core time code to think the timer fired too soon, and
+ will end up resetting it each time. It could be filtered, but
+ doing so has complications when the ktime clocksource is not yet
+ the xen clocksource (ie, at boot time).
+
+ The new vcpu_op-based timer interface allows the tick timer period
+ to be changed or turned off. The tick timer is not useful as a
+ periodic timer because events are only delivered to running vcpus.
+ The one-shot timer can report when a timeout is in the past, so
+ set_next_event is capable of returning -ETIME when appropriate.
+ This interface is used when available.
+*/
+
+
+/*
+ Get a hypervisor absolute time. In theory we could maintain an
+ offset between the kernel's time and the hypervisor's time, and
+ apply that to a kernel's absolute timeout. Unfortunately the
+ hypervisor and kernel times can drift even if the kernel is using
+ the Xen clocksource, because ntp can warp the kernel's clocksource.
+*/
+static s64 get_abs_timeout(unsigned long delta)
+{
+ return xen_clocksource_read() + delta;
+}
+
+static int xen_timerop_shutdown(struct clock_event_device *evt)
+{
+ /* cancel timeout */
+ HYPERVISOR_set_timer_op(0);
+
+ return 0;
+}
+
+static int xen_timerop_set_next_event(unsigned long delta,
+ struct clock_event_device *evt)
+{
+ WARN_ON(!clockevent_state_oneshot(evt));
+
+ if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
+ BUG();
+
+ /* We may have missed the deadline, but there's no real way of
+ knowing for sure. If the event was in the past, then we'll
+ get an immediate interrupt. */
+
+ return 0;
+}
+
+static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
+ .name = "xen",
+ .features = CLOCK_EVT_FEAT_ONESHOT,
+
+ .max_delta_ns = 0xffffffff,
+ .max_delta_ticks = 0xffffffff,
+ .min_delta_ns = TIMER_SLOP,
+ .min_delta_ticks = TIMER_SLOP,
+
+ .mult = 1,
+ .shift = 0,
+ .rating = 500,
+
+ .set_state_shutdown = xen_timerop_shutdown,
+ .set_next_event = xen_timerop_set_next_event,
+};
+
+static int xen_vcpuop_shutdown(struct clock_event_device *evt)
+{
+ int cpu = smp_processor_id();
+
+ if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
+ NULL) ||
+ HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
+ NULL))
+ BUG();
+
+ return 0;
+}
+
+static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
+{
+ int cpu = smp_processor_id();
+
+ if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
+ NULL))
+ BUG();
+
+ return 0;
+}
+
+static int xen_vcpuop_set_next_event(unsigned long delta,
+ struct clock_event_device *evt)
+{
+ int cpu = smp_processor_id();
+ struct vcpu_set_singleshot_timer single;
+ int ret;
+
+ WARN_ON(!clockevent_state_oneshot(evt));
+
+ single.timeout_abs_ns = get_abs_timeout(delta);
+ /* Get an event anyway, even if the timeout is already expired */
+ single.flags = 0;
+
+ ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
+ &single);
+ BUG_ON(ret != 0);
+
+ return ret;
+}
+
+static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
+ .name = "xen",
+ .features = CLOCK_EVT_FEAT_ONESHOT,
+
+ .max_delta_ns = 0xffffffff,
+ .max_delta_ticks = 0xffffffff,
+ .min_delta_ns = TIMER_SLOP,
+ .min_delta_ticks = TIMER_SLOP,
+
+ .mult = 1,
+ .shift = 0,
+ .rating = 500,
+
+ .set_state_shutdown = xen_vcpuop_shutdown,
+ .set_state_oneshot = xen_vcpuop_set_oneshot,
+ .set_next_event = xen_vcpuop_set_next_event,
+};
+
+static const struct clock_event_device *xen_clockevent =
+ &xen_timerop_clockevent;
+
+struct xen_clock_event_device {
+ struct clock_event_device evt;
+ char name[16];
+};
+static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
+
+static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
+{
+ struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
+ irqreturn_t ret;
+
+ ret = IRQ_NONE;
+ if (evt->event_handler) {
+ evt->event_handler(evt);
+ ret = IRQ_HANDLED;
+ }
+
+ return ret;
+}
+
+void xen_teardown_timer(int cpu)
+{
+ struct clock_event_device *evt;
+ evt = &per_cpu(xen_clock_events, cpu).evt;
+
+ if (evt->irq >= 0) {
+ unbind_from_irqhandler(evt->irq, NULL);
+ evt->irq = -1;
+ }
+}
+
+void xen_setup_timer(int cpu)
+{
+ struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
+ struct clock_event_device *evt = &xevt->evt;
+ int irq;
+
+ WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
+ if (evt->irq >= 0)
+ xen_teardown_timer(cpu);
+
+ printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
+
+ snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
+
+ irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
+ IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
+ IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
+ xevt->name, NULL);
+ (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
+
+ memcpy(evt, xen_clockevent, sizeof(*evt));
+
+ evt->cpumask = cpumask_of(cpu);
+ evt->irq = irq;
+}
+
+
+void xen_setup_cpu_clockevents(void)
+{
+ clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
+}
+
+void xen_timer_resume(void)
+{
+ int cpu;
+
+ if (xen_clockevent != &xen_vcpuop_clockevent)
+ return;
+
+ for_each_online_cpu(cpu) {
+ if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
+ xen_vcpu_nr(cpu), NULL))
+ BUG();
+ }
+}
+
+static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
+static u64 xen_clock_value_saved;
+
+void xen_save_time_memory_area(void)
+{
+ struct vcpu_register_time_memory_area t;
+ int ret;
+
+ xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
+
+ if (!xen_clock)
+ return;
+
+ t.addr.v = NULL;
+
+ ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
+ if (ret != 0)
+ pr_notice("Cannot save secondary vcpu_time_info (err %d)",
+ ret);
+ else
+ clear_page(xen_clock);
+}
+
+void xen_restore_time_memory_area(void)
+{
+ struct vcpu_register_time_memory_area t;
+ int ret;
+
+ if (!xen_clock)
+ goto out;
+
+ t.addr.v = &xen_clock->pvti;
+
+ ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
+
+ /*
+ * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
+ * register the secondary time info with Xen or if we migrated to a
+ * host without the necessary flags. On both of these cases what
+ * happens is either process seeing a zeroed out pvti or seeing no
+ * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
+ * if 0, it discards the data in pvti and fallbacks to a system
+ * call for a reliable timestamp.
+ */
+ if (ret != 0)
+ pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
+ ret);
+
+out:
+ /* Need pvclock_resume() before using xen_clocksource_read(). */
+ pvclock_resume();
+ xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
+}
+
+static void xen_setup_vsyscall_time_info(void)
+{
+ struct vcpu_register_time_memory_area t;
+ struct pvclock_vsyscall_time_info *ti;
+ int ret;
+
+ ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
+ if (!ti)
+ return;
+
+ t.addr.v = &ti->pvti;
+
+ ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
+ if (ret) {
+ pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
+ free_page((unsigned long)ti);
+ return;
+ }
+
+ /*
+ * If primary time info had this bit set, secondary should too since
+ * it's the same data on both just different memory regions. But we
+ * still check it in case hypervisor is buggy.
+ */
+ if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
+ t.addr.v = NULL;
+ ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
+ 0, &t);
+ if (!ret)
+ free_page((unsigned long)ti);
+
+ pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
+ return;
+ }
+
+ xen_clock = ti;
+ pvclock_set_pvti_cpu0_va(xen_clock);
+
+ xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
+}
+
+/*
+ * Check if it is possible to safely use the tsc as a clocksource. This is
+ * only true if the hypervisor notifies the guest that its tsc is invariant,
+ * the tsc is stable, and the tsc instruction will never be emulated.
+ */
+static int __init xen_tsc_safe_clocksource(void)
+{
+ u32 eax, ebx, ecx, edx;
+
+ if (!(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)))
+ return 0;
+
+ if (!(boot_cpu_has(X86_FEATURE_NONSTOP_TSC)))
+ return 0;
+
+ if (check_tsc_unstable())
+ return 0;
+
+ /* Leaf 4, sub-leaf 0 (0x40000x03) */
+ cpuid_count(xen_cpuid_base() + 3, 0, &eax, &ebx, &ecx, &edx);
+
+ /* tsc_mode = no_emulate (2) */
+ if (ebx != 2)
+ return 0;
+
+ return 1;
+}
+
+static void __init xen_time_init(void)
+{
+ struct pvclock_vcpu_time_info *pvti;
+ int cpu = smp_processor_id();
+ struct timespec64 tp;
+
+ /*
+ * As Dom0 is never moved, no penalty on using TSC there.
+ *
+ * If it is possible for the guest to determine that the tsc is a safe
+ * clocksource, then set xen_clocksource rating below that of the tsc
+ * so that the system prefers tsc instead.
+ */
+ if (xen_initial_domain())
+ xen_clocksource.rating = 275;
+ else if (xen_tsc_safe_clocksource())
+ xen_clocksource.rating = 299;
+
+ clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
+
+ if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
+ NULL) == 0) {
+ /* Successfully turned off 100Hz tick, so we have the
+ vcpuop-based timer interface */
+ printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
+ xen_clockevent = &xen_vcpuop_clockevent;
+ }
+
+ /* Set initial system time with full resolution */
+ xen_read_wallclock(&tp);
+ do_settimeofday64(&tp);
+
+ setup_force_cpu_cap(X86_FEATURE_TSC);
+
+ /*
+ * We check ahead on the primary time info if this
+ * bit is supported hence speeding up Xen clocksource.
+ */
+ pvti = &__this_cpu_read(xen_vcpu)->time;
+ if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
+ pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
+ xen_setup_vsyscall_time_info();
+ }
+
+ xen_setup_runstate_info(cpu);
+ xen_setup_timer(cpu);
+ xen_setup_cpu_clockevents();
+
+ xen_time_setup_guest();
+
+ if (xen_initial_domain())
+ pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
+}
+
+static void __init xen_init_time_common(void)
+{
+ xen_sched_clock_offset = xen_clocksource_read();
+ static_call_update(pv_steal_clock, xen_steal_clock);
+ paravirt_set_sched_clock(xen_sched_clock);
+
+ x86_platform.calibrate_tsc = xen_tsc_khz;
+ x86_platform.get_wallclock = xen_get_wallclock;
+}
+
+void __init xen_init_time_ops(void)
+{
+ xen_init_time_common();
+
+ x86_init.timers.timer_init = xen_time_init;
+ x86_init.timers.setup_percpu_clockev = x86_init_noop;
+ x86_cpuinit.setup_percpu_clockev = x86_init_noop;
+
+ /* Dom0 uses the native method to set the hardware RTC. */
+ if (!xen_initial_domain())
+ x86_platform.set_wallclock = xen_set_wallclock;
+}
+
+#ifdef CONFIG_XEN_PVHVM
+static void xen_hvm_setup_cpu_clockevents(void)
+{
+ int cpu = smp_processor_id();
+ xen_setup_runstate_info(cpu);
+ /*
+ * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
+ * doing it xen_hvm_cpu_notify (which gets called by smp_init during
+ * early bootup and also during CPU hotplug events).
+ */
+ xen_setup_cpu_clockevents();
+}
+
+void __init xen_hvm_init_time_ops(void)
+{
+ static bool hvm_time_initialized;
+
+ if (hvm_time_initialized)
+ return;
+
+ /*
+ * vector callback is needed otherwise we cannot receive interrupts
+ * on cpu > 0 and at this point we don't know how many cpus are
+ * available.
+ */
+ if (!xen_have_vector_callback)
+ return;
+
+ if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
+ pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
+ return;
+ }
+
+ /*
+ * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
+ * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
+ * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
+ * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
+ *
+ * The xen_hvm_init_time_ops() should be called again later after
+ * __this_cpu_read(xen_vcpu) is available.
+ */
+ if (!__this_cpu_read(xen_vcpu)) {
+ pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
+ xen_vcpu_nr(0));
+ return;
+ }
+
+ xen_init_time_common();
+
+ x86_init.timers.setup_percpu_clockev = xen_time_init;
+ x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
+
+ x86_platform.set_wallclock = xen_set_wallclock;
+
+ hvm_time_initialized = true;
+}
+#endif
+
+/* Kernel parameter to specify Xen timer slop */
+static int __init parse_xen_timer_slop(char *ptr)
+{
+ unsigned long slop = memparse(ptr, NULL);
+
+ xen_timerop_clockevent.min_delta_ns = slop;
+ xen_timerop_clockevent.min_delta_ticks = slop;
+ xen_vcpuop_clockevent.min_delta_ns = slop;
+ xen_vcpuop_clockevent.min_delta_ticks = slop;
+
+ return 0;
+}
+early_param("xen_timer_slop", parse_xen_timer_slop);