diff options
| author | 2023-02-21 18:24:12 -0800 | |
|---|---|---|
| committer | 2023-02-21 18:24:12 -0800 | |
| commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
| tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/gpu/drm/i915/gem/i915_gem_domain.c | |
| download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip | |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
| -rw-r--r-- | drivers/gpu/drm/i915/gem/i915_gem_domain.c | 740 |
1 files changed, 740 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gem/i915_gem_domain.c b/drivers/gpu/drm/i915/gem/i915_gem_domain.c new file mode 100644 index 000000000..d44a152ce --- /dev/null +++ b/drivers/gpu/drm/i915/gem/i915_gem_domain.c @@ -0,0 +1,740 @@ +/* + * SPDX-License-Identifier: MIT + * + * Copyright © 2014-2016 Intel Corporation + */ + +#include "display/intel_frontbuffer.h" +#include "gt/intel_gt.h" + +#include "i915_drv.h" +#include "i915_gem_clflush.h" +#include "i915_gem_domain.h" +#include "i915_gem_gtt.h" +#include "i915_gem_ioctls.h" +#include "i915_gem_lmem.h" +#include "i915_gem_mman.h" +#include "i915_gem_object.h" +#include "i915_vma.h" + +static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) +{ + struct drm_i915_private *i915 = to_i915(obj->base.dev); + + if (IS_DGFX(i915)) + return false; + + return !(obj->cache_level == I915_CACHE_NONE || + obj->cache_level == I915_CACHE_WT); +} + +bool i915_gem_cpu_write_needs_clflush(struct drm_i915_gem_object *obj) +{ + struct drm_i915_private *i915 = to_i915(obj->base.dev); + + if (obj->cache_dirty) + return false; + + if (IS_DGFX(i915)) + return false; + + if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)) + return true; + + /* Currently in use by HW (display engine)? Keep flushed. */ + return i915_gem_object_is_framebuffer(obj); +} + +static void +flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) +{ + struct i915_vma *vma; + + assert_object_held(obj); + + if (!(obj->write_domain & flush_domains)) + return; + + switch (obj->write_domain) { + case I915_GEM_DOMAIN_GTT: + spin_lock(&obj->vma.lock); + for_each_ggtt_vma(vma, obj) { + if (i915_vma_unset_ggtt_write(vma)) + intel_gt_flush_ggtt_writes(vma->vm->gt); + } + spin_unlock(&obj->vma.lock); + + i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); + break; + + case I915_GEM_DOMAIN_WC: + wmb(); + break; + + case I915_GEM_DOMAIN_CPU: + i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); + break; + + case I915_GEM_DOMAIN_RENDER: + if (gpu_write_needs_clflush(obj)) + obj->cache_dirty = true; + break; + } + + obj->write_domain = 0; +} + +static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) +{ + /* + * We manually flush the CPU domain so that we can override and + * force the flush for the display, and perform it asyncrhonously. + */ + flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); + if (obj->cache_dirty) + i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); + obj->write_domain = 0; +} + +void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) +{ + if (!i915_gem_object_is_framebuffer(obj)) + return; + + i915_gem_object_lock(obj, NULL); + __i915_gem_object_flush_for_display(obj); + i915_gem_object_unlock(obj); +} + +void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj) +{ + if (i915_gem_object_is_framebuffer(obj)) + __i915_gem_object_flush_for_display(obj); +} + +/** + * Moves a single object to the WC read, and possibly write domain. + * @obj: object to act on + * @write: ask for write access or read only + * + * This function returns when the move is complete, including waiting on + * flushes to occur. + */ +int +i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) +{ + int ret; + + assert_object_held(obj); + + ret = i915_gem_object_wait(obj, + I915_WAIT_INTERRUPTIBLE | + (write ? I915_WAIT_ALL : 0), + MAX_SCHEDULE_TIMEOUT); + if (ret) + return ret; + + if (obj->write_domain == I915_GEM_DOMAIN_WC) + return 0; + + /* Flush and acquire obj->pages so that we are coherent through + * direct access in memory with previous cached writes through + * shmemfs and that our cache domain tracking remains valid. + * For example, if the obj->filp was moved to swap without us + * being notified and releasing the pages, we would mistakenly + * continue to assume that the obj remained out of the CPU cached + * domain. + */ + ret = i915_gem_object_pin_pages(obj); + if (ret) + return ret; + + flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); + + /* Serialise direct access to this object with the barriers for + * coherent writes from the GPU, by effectively invalidating the + * WC domain upon first access. + */ + if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0) + mb(); + + /* It should now be out of any other write domains, and we can update + * the domain values for our changes. + */ + GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0); + obj->read_domains |= I915_GEM_DOMAIN_WC; + if (write) { + obj->read_domains = I915_GEM_DOMAIN_WC; + obj->write_domain = I915_GEM_DOMAIN_WC; + obj->mm.dirty = true; + } + + i915_gem_object_unpin_pages(obj); + return 0; +} + +/** + * Moves a single object to the GTT read, and possibly write domain. + * @obj: object to act on + * @write: ask for write access or read only + * + * This function returns when the move is complete, including waiting on + * flushes to occur. + */ +int +i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) +{ + int ret; + + assert_object_held(obj); + + ret = i915_gem_object_wait(obj, + I915_WAIT_INTERRUPTIBLE | + (write ? I915_WAIT_ALL : 0), + MAX_SCHEDULE_TIMEOUT); + if (ret) + return ret; + + if (obj->write_domain == I915_GEM_DOMAIN_GTT) + return 0; + + /* Flush and acquire obj->pages so that we are coherent through + * direct access in memory with previous cached writes through + * shmemfs and that our cache domain tracking remains valid. + * For example, if the obj->filp was moved to swap without us + * being notified and releasing the pages, we would mistakenly + * continue to assume that the obj remained out of the CPU cached + * domain. + */ + ret = i915_gem_object_pin_pages(obj); + if (ret) + return ret; + + flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); + + /* Serialise direct access to this object with the barriers for + * coherent writes from the GPU, by effectively invalidating the + * GTT domain upon first access. + */ + if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0) + mb(); + + /* It should now be out of any other write domains, and we can update + * the domain values for our changes. + */ + GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0); + obj->read_domains |= I915_GEM_DOMAIN_GTT; + if (write) { + struct i915_vma *vma; + + obj->read_domains = I915_GEM_DOMAIN_GTT; + obj->write_domain = I915_GEM_DOMAIN_GTT; + obj->mm.dirty = true; + + spin_lock(&obj->vma.lock); + for_each_ggtt_vma(vma, obj) + if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) + i915_vma_set_ggtt_write(vma); + spin_unlock(&obj->vma.lock); + } + + i915_gem_object_unpin_pages(obj); + return 0; +} + +/** + * Changes the cache-level of an object across all VMA. + * @obj: object to act on + * @cache_level: new cache level to set for the object + * + * After this function returns, the object will be in the new cache-level + * across all GTT and the contents of the backing storage will be coherent, + * with respect to the new cache-level. In order to keep the backing storage + * coherent for all users, we only allow a single cache level to be set + * globally on the object and prevent it from being changed whilst the + * hardware is reading from the object. That is if the object is currently + * on the scanout it will be set to uncached (or equivalent display + * cache coherency) and all non-MOCS GPU access will also be uncached so + * that all direct access to the scanout remains coherent. + */ +int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, + enum i915_cache_level cache_level) +{ + int ret; + + if (obj->cache_level == cache_level) + return 0; + + ret = i915_gem_object_wait(obj, + I915_WAIT_INTERRUPTIBLE | + I915_WAIT_ALL, + MAX_SCHEDULE_TIMEOUT); + if (ret) + return ret; + + /* Always invalidate stale cachelines */ + if (obj->cache_level != cache_level) { + i915_gem_object_set_cache_coherency(obj, cache_level); + obj->cache_dirty = true; + } + + /* The cache-level will be applied when each vma is rebound. */ + return i915_gem_object_unbind(obj, + I915_GEM_OBJECT_UNBIND_ACTIVE | + I915_GEM_OBJECT_UNBIND_BARRIER); +} + +int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, + struct drm_file *file) +{ + struct drm_i915_gem_caching *args = data; + struct drm_i915_gem_object *obj; + int err = 0; + + if (IS_DGFX(to_i915(dev))) + return -ENODEV; + + rcu_read_lock(); + obj = i915_gem_object_lookup_rcu(file, args->handle); + if (!obj) { + err = -ENOENT; + goto out; + } + + switch (obj->cache_level) { + case I915_CACHE_LLC: + case I915_CACHE_L3_LLC: + args->caching = I915_CACHING_CACHED; + break; + + case I915_CACHE_WT: + args->caching = I915_CACHING_DISPLAY; + break; + + default: + args->caching = I915_CACHING_NONE; + break; + } +out: + rcu_read_unlock(); + return err; +} + +int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, + struct drm_file *file) +{ + struct drm_i915_private *i915 = to_i915(dev); + struct drm_i915_gem_caching *args = data; + struct drm_i915_gem_object *obj; + enum i915_cache_level level; + int ret = 0; + + if (IS_DGFX(i915)) + return -ENODEV; + + switch (args->caching) { + case I915_CACHING_NONE: + level = I915_CACHE_NONE; + break; + case I915_CACHING_CACHED: + /* + * Due to a HW issue on BXT A stepping, GPU stores via a + * snooped mapping may leave stale data in a corresponding CPU + * cacheline, whereas normally such cachelines would get + * invalidated. + */ + if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) + return -ENODEV; + + level = I915_CACHE_LLC; + break; + case I915_CACHING_DISPLAY: + level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; + break; + default: + return -EINVAL; + } + + obj = i915_gem_object_lookup(file, args->handle); + if (!obj) + return -ENOENT; + + /* + * The caching mode of proxy object is handled by its generator, and + * not allowed to be changed by userspace. + */ + if (i915_gem_object_is_proxy(obj)) { + /* + * Silently allow cached for userptr; the vulkan driver + * sets all objects to cached + */ + if (!i915_gem_object_is_userptr(obj) || + args->caching != I915_CACHING_CACHED) + ret = -ENXIO; + + goto out; + } + + ret = i915_gem_object_lock_interruptible(obj, NULL); + if (ret) + goto out; + + ret = i915_gem_object_set_cache_level(obj, level); + i915_gem_object_unlock(obj); + +out: + i915_gem_object_put(obj); + return ret; +} + +/* + * Prepare buffer for display plane (scanout, cursors, etc). Can be called from + * an uninterruptible phase (modesetting) and allows any flushes to be pipelined + * (for pageflips). We only flush the caches while preparing the buffer for + * display, the callers are responsible for frontbuffer flush. + */ +struct i915_vma * +i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, + struct i915_gem_ww_ctx *ww, + u32 alignment, + const struct i915_gtt_view *view, + unsigned int flags) +{ + struct drm_i915_private *i915 = to_i915(obj->base.dev); + struct i915_vma *vma; + int ret; + + /* Frame buffer must be in LMEM */ + if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj)) + return ERR_PTR(-EINVAL); + + /* + * The display engine is not coherent with the LLC cache on gen6. As + * a result, we make sure that the pinning that is about to occur is + * done with uncached PTEs. This is lowest common denominator for all + * chipsets. + * + * However for gen6+, we could do better by using the GFDT bit instead + * of uncaching, which would allow us to flush all the LLC-cached data + * with that bit in the PTE to main memory with just one PIPE_CONTROL. + */ + ret = i915_gem_object_set_cache_level(obj, + HAS_WT(i915) ? + I915_CACHE_WT : I915_CACHE_NONE); + if (ret) + return ERR_PTR(ret); + + /* + * As the user may map the buffer once pinned in the display plane + * (e.g. libkms for the bootup splash), we have to ensure that we + * always use map_and_fenceable for all scanout buffers. However, + * it may simply be too big to fit into mappable, in which case + * put it anyway and hope that userspace can cope (but always first + * try to preserve the existing ABI). + */ + vma = ERR_PTR(-ENOSPC); + if ((flags & PIN_MAPPABLE) == 0 && + (!view || view->type == I915_GTT_VIEW_NORMAL)) + vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, alignment, + flags | PIN_MAPPABLE | + PIN_NONBLOCK); + if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) + vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, + alignment, flags); + if (IS_ERR(vma)) + return vma; + + vma->display_alignment = max_t(u64, vma->display_alignment, alignment); + i915_vma_mark_scanout(vma); + + i915_gem_object_flush_if_display_locked(obj); + + return vma; +} + +/** + * Moves a single object to the CPU read, and possibly write domain. + * @obj: object to act on + * @write: requesting write or read-only access + * + * This function returns when the move is complete, including waiting on + * flushes to occur. + */ +int +i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) +{ + int ret; + + assert_object_held(obj); + + ret = i915_gem_object_wait(obj, + I915_WAIT_INTERRUPTIBLE | + (write ? I915_WAIT_ALL : 0), + MAX_SCHEDULE_TIMEOUT); + if (ret) + return ret; + + flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); + + /* Flush the CPU cache if it's still invalid. */ + if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) { + i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); + obj->read_domains |= I915_GEM_DOMAIN_CPU; + } + + /* It should now be out of any other write domains, and we can update + * the domain values for our changes. + */ + GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU); + + /* If we're writing through the CPU, then the GPU read domains will + * need to be invalidated at next use. + */ + if (write) + __start_cpu_write(obj); + + return 0; +} + +/** + * Called when user space prepares to use an object with the CPU, either + * through the mmap ioctl's mapping or a GTT mapping. + * @dev: drm device + * @data: ioctl data blob + * @file: drm file + */ +int +i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, + struct drm_file *file) +{ + struct drm_i915_gem_set_domain *args = data; + struct drm_i915_gem_object *obj; + u32 read_domains = args->read_domains; + u32 write_domain = args->write_domain; + int err; + + if (IS_DGFX(to_i915(dev))) + return -ENODEV; + + /* Only handle setting domains to types used by the CPU. */ + if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) + return -EINVAL; + + /* + * Having something in the write domain implies it's in the read + * domain, and only that read domain. Enforce that in the request. + */ + if (write_domain && read_domains != write_domain) + return -EINVAL; + + if (!read_domains) + return 0; + + obj = i915_gem_object_lookup(file, args->handle); + if (!obj) + return -ENOENT; + + /* + * Try to flush the object off the GPU without holding the lock. + * We will repeat the flush holding the lock in the normal manner + * to catch cases where we are gazumped. + */ + err = i915_gem_object_wait(obj, + I915_WAIT_INTERRUPTIBLE | + I915_WAIT_PRIORITY | + (write_domain ? I915_WAIT_ALL : 0), + MAX_SCHEDULE_TIMEOUT); + if (err) + goto out; + + if (i915_gem_object_is_userptr(obj)) { + /* + * Try to grab userptr pages, iris uses set_domain to check + * userptr validity + */ + err = i915_gem_object_userptr_validate(obj); + if (!err) + err = i915_gem_object_wait(obj, + I915_WAIT_INTERRUPTIBLE | + I915_WAIT_PRIORITY | + (write_domain ? I915_WAIT_ALL : 0), + MAX_SCHEDULE_TIMEOUT); + goto out; + } + + /* + * Proxy objects do not control access to the backing storage, ergo + * they cannot be used as a means to manipulate the cache domain + * tracking for that backing storage. The proxy object is always + * considered to be outside of any cache domain. + */ + if (i915_gem_object_is_proxy(obj)) { + err = -ENXIO; + goto out; + } + + err = i915_gem_object_lock_interruptible(obj, NULL); + if (err) + goto out; + + /* + * Flush and acquire obj->pages so that we are coherent through + * direct access in memory with previous cached writes through + * shmemfs and that our cache domain tracking remains valid. + * For example, if the obj->filp was moved to swap without us + * being notified and releasing the pages, we would mistakenly + * continue to assume that the obj remained out of the CPU cached + * domain. + */ + err = i915_gem_object_pin_pages(obj); + if (err) + goto out_unlock; + + /* + * Already in the desired write domain? Nothing for us to do! + * + * We apply a little bit of cunning here to catch a broader set of + * no-ops. If obj->write_domain is set, we must be in the same + * obj->read_domains, and only that domain. Therefore, if that + * obj->write_domain matches the request read_domains, we are + * already in the same read/write domain and can skip the operation, + * without having to further check the requested write_domain. + */ + if (READ_ONCE(obj->write_domain) == read_domains) + goto out_unpin; + + if (read_domains & I915_GEM_DOMAIN_WC) + err = i915_gem_object_set_to_wc_domain(obj, write_domain); + else if (read_domains & I915_GEM_DOMAIN_GTT) + err = i915_gem_object_set_to_gtt_domain(obj, write_domain); + else + err = i915_gem_object_set_to_cpu_domain(obj, write_domain); + +out_unpin: + i915_gem_object_unpin_pages(obj); + +out_unlock: + i915_gem_object_unlock(obj); + + if (!err && write_domain) + i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); + +out: + i915_gem_object_put(obj); + return err; +} + +/* + * Pins the specified object's pages and synchronizes the object with + * GPU accesses. Sets needs_clflush to non-zero if the caller should + * flush the object from the CPU cache. + */ +int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj, + unsigned int *needs_clflush) +{ + int ret; + + *needs_clflush = 0; + if (!i915_gem_object_has_struct_page(obj)) + return -ENODEV; + + assert_object_held(obj); + + ret = i915_gem_object_wait(obj, + I915_WAIT_INTERRUPTIBLE, + MAX_SCHEDULE_TIMEOUT); + if (ret) + return ret; + + ret = i915_gem_object_pin_pages(obj); + if (ret) + return ret; + + if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ || + !static_cpu_has(X86_FEATURE_CLFLUSH)) { + ret = i915_gem_object_set_to_cpu_domain(obj, false); + if (ret) + goto err_unpin; + else + goto out; + } + + flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); + + /* If we're not in the cpu read domain, set ourself into the gtt + * read domain and manually flush cachelines (if required). This + * optimizes for the case when the gpu will dirty the data + * anyway again before the next pread happens. + */ + if (!obj->cache_dirty && + !(obj->read_domains & I915_GEM_DOMAIN_CPU)) + *needs_clflush = CLFLUSH_BEFORE; + +out: + /* return with the pages pinned */ + return 0; + +err_unpin: + i915_gem_object_unpin_pages(obj); + return ret; +} + +int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj, + unsigned int *needs_clflush) +{ + int ret; + + *needs_clflush = 0; + if (!i915_gem_object_has_struct_page(obj)) + return -ENODEV; + + assert_object_held(obj); + + ret = i915_gem_object_wait(obj, + I915_WAIT_INTERRUPTIBLE | + I915_WAIT_ALL, + MAX_SCHEDULE_TIMEOUT); + if (ret) + return ret; + + ret = i915_gem_object_pin_pages(obj); + if (ret) + return ret; + + if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE || + !static_cpu_has(X86_FEATURE_CLFLUSH)) { + ret = i915_gem_object_set_to_cpu_domain(obj, true); + if (ret) + goto err_unpin; + else + goto out; + } + + flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); + + /* If we're not in the cpu write domain, set ourself into the + * gtt write domain and manually flush cachelines (as required). + * This optimizes for the case when the gpu will use the data + * right away and we therefore have to clflush anyway. + */ + if (!obj->cache_dirty) { + *needs_clflush |= CLFLUSH_AFTER; + + /* + * Same trick applies to invalidate partially written + * cachelines read before writing. + */ + if (!(obj->read_domains & I915_GEM_DOMAIN_CPU)) + *needs_clflush |= CLFLUSH_BEFORE; + } + +out: + i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); + obj->mm.dirty = true; + /* return with the pages pinned */ + return 0; + +err_unpin: + i915_gem_object_unpin_pages(obj); + return ret; +} |
