diff options
| author | 2023-02-21 18:24:12 -0800 | |
|---|---|---|
| committer | 2023-02-21 18:24:12 -0800 | |
| commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
| tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c | |
| download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip | |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
| -rw-r--r-- | drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c | 641 |
1 files changed, 641 insertions, 0 deletions
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c b/drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c new file mode 100644 index 000000000..7b1eb44ff --- /dev/null +++ b/drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c @@ -0,0 +1,641 @@ +/* + * Copyright 2013 Red Hat Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + * Authors: Ben Skeggs + */ +#define nv50_ram(p) container_of((p), struct nv50_ram, base) +#include "ram.h" +#include "ramseq.h" +#include "nv50.h" + +#include <core/option.h> +#include <subdev/bios.h> +#include <subdev/bios/perf.h> +#include <subdev/bios/pll.h> +#include <subdev/bios/rammap.h> +#include <subdev/bios/timing.h> +#include <subdev/clk/pll.h> +#include <subdev/gpio.h> + +struct nv50_ramseq { + struct hwsq base; + struct hwsq_reg r_0x002504; + struct hwsq_reg r_0x004008; + struct hwsq_reg r_0x00400c; + struct hwsq_reg r_0x00c040; + struct hwsq_reg r_0x100200; + struct hwsq_reg r_0x100210; + struct hwsq_reg r_0x10021c; + struct hwsq_reg r_0x1002d0; + struct hwsq_reg r_0x1002d4; + struct hwsq_reg r_0x1002dc; + struct hwsq_reg r_0x10053c; + struct hwsq_reg r_0x1005a0; + struct hwsq_reg r_0x1005a4; + struct hwsq_reg r_0x100710; + struct hwsq_reg r_0x100714; + struct hwsq_reg r_0x100718; + struct hwsq_reg r_0x10071c; + struct hwsq_reg r_0x100da0; + struct hwsq_reg r_0x100e20; + struct hwsq_reg r_0x100e24; + struct hwsq_reg r_0x611200; + struct hwsq_reg r_timing[9]; + struct hwsq_reg r_mr[4]; + struct hwsq_reg r_gpio[4]; +}; + +struct nv50_ram { + struct nvkm_ram base; + struct nv50_ramseq hwsq; +}; + +#define T(t) cfg->timing_10_##t +static int +nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing) +{ + struct nvbios_ramcfg *cfg = &ram->base.target.bios; + struct nvkm_subdev *subdev = &ram->base.fb->subdev; + struct nvkm_device *device = subdev->device; + u32 cur2, cur4, cur7, cur8; + u8 unkt3b; + + cur2 = nvkm_rd32(device, 0x100228); + cur4 = nvkm_rd32(device, 0x100230); + cur7 = nvkm_rd32(device, 0x10023c); + cur8 = nvkm_rd32(device, 0x100240); + + switch ((!T(CWL)) * ram->base.type) { + case NVKM_RAM_TYPE_DDR2: + T(CWL) = T(CL) - 1; + break; + case NVKM_RAM_TYPE_GDDR3: + T(CWL) = ((cur2 & 0xff000000) >> 24) + 1; + break; + } + + /* XXX: N=1 is not proper statistics */ + if (device->chipset == 0xa0) { + unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40; + timing[6] = (0x2d + T(CL) - T(CWL) + + ram->base.next->bios.rammap_00_16_40) << 16 | + T(CWL) << 8 | + (0x2f + T(CL) - T(CWL)); + } else { + unkt3b = 0x16; + timing[6] = (0x2b + T(CL) - T(CWL)) << 16 | + max_t(s8, T(CWL) - 2, 1) << 8 | + (0x2e + T(CL) - T(CWL)); + } + + timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC)); + timing[1] = (T(WR) + 1 + T(CWL)) << 24 | + max_t(u8, T(18), 1) << 16 | + (T(WTR) + 1 + T(CWL)) << 8 | + (3 + T(CL) - T(CWL)); + timing[2] = (T(CWL) - 1) << 24 | + (T(RRD) << 16) | + (T(RCDWR) << 8) | + T(RCDRD); + timing[3] = (unkt3b - 2 + T(CL)) << 24 | + unkt3b << 16 | + (T(CL) - 1) << 8 | + (T(CL) - 1); + timing[4] = (cur4 & 0xffff0000) | + T(13) << 8 | + T(13); + timing[5] = T(RFC) << 24 | + max_t(u8, T(RCDRD), T(RCDWR)) << 16 | + T(RP); + /* Timing 6 is already done above */ + timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16; + timing[8] = (cur8 & 0xffffff00); + + /* XXX: P.version == 1 only has DDR2 and GDDR3? */ + if (ram->base.type == NVKM_RAM_TYPE_DDR2) { + timing[5] |= (T(CL) + 3) << 8; + timing[8] |= (T(CL) - 4); + } else + if (ram->base.type == NVKM_RAM_TYPE_GDDR3) { + timing[5] |= (T(CL) + 2) << 8; + timing[8] |= (T(CL) - 2); + } + + nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n", + timing[0], timing[1], timing[2], timing[3]); + nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n", + timing[4], timing[5], timing[6], timing[7]); + nvkm_debug(subdev, " 240: %08x\n", timing[8]); + return 0; +} + +static int +nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing) +{ + unsigned int i; + struct nvbios_ramcfg *cfg = &ram->base.target.bios; + struct nvkm_subdev *subdev = &ram->base.fb->subdev; + struct nvkm_device *device = subdev->device; + + for (i = 0; i <= 8; i++) + timing[i] = nvkm_rd32(device, 0x100220 + (i * 4)); + + /* Derive the bare minimum for the MR calculation to succeed */ + cfg->timing_ver = 0x10; + T(CL) = (timing[3] & 0xff) + 1; + + switch (ram->base.type) { + case NVKM_RAM_TYPE_DDR2: + T(CWL) = T(CL) - 1; + break; + case NVKM_RAM_TYPE_GDDR3: + T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1; + break; + default: + return -ENOSYS; + } + + T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL); + + return 0; +} +#undef T + +static void +nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq) +{ + ram_mask(hwsq, mr[0], 0x100, 0x100); + ram_mask(hwsq, mr[0], 0x100, 0x000); + ram_nsec(hwsq, 24000); +} + +static void +nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val) +{ + struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio; + struct dcb_gpio_func func; + u32 reg, sh, gpio_val; + int ret; + + if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) { + ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func); + if (ret) + return; + + reg = func.line >> 3; + sh = (func.line & 0x7) << 2; + gpio_val = ram_rd32(hwsq, gpio[reg]); + + if (gpio_val & (8 << sh)) + val = !val; + if (!(func.log[1] & 1)) + val = !val; + + ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh)); + ram_nsec(hwsq, 20000); + } +} + +static int +nv50_ram_calc(struct nvkm_ram *base, u32 freq) +{ + struct nv50_ram *ram = nv50_ram(base); + struct nv50_ramseq *hwsq = &ram->hwsq; + struct nvkm_subdev *subdev = &ram->base.fb->subdev; + struct nvkm_bios *bios = subdev->device->bios; + struct nvbios_perfE perfE; + struct nvbios_pll mpll; + struct nvkm_ram_data *next; + u8 ver, hdr, cnt, len, strap, size; + u32 data; + u32 r100da0, r004008, unk710, unk714, unk718, unk71c; + int N1, M1, N2, M2, P; + int ret, i; + u32 timing[9]; + + next = &ram->base.target; + next->freq = freq; + ram->base.next = next; + + /* lookup closest matching performance table entry for frequency */ + i = 0; + do { + data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt, + &size, &perfE); + if (!data || (ver < 0x25 || ver >= 0x40) || + (size < 2)) { + nvkm_error(subdev, "invalid/missing perftab entry\n"); + return -EINVAL; + } + } while (perfE.memory < freq); + + nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios); + + /* locate specific data set for the attached memory */ + strap = nvbios_ramcfg_index(subdev); + if (strap >= cnt) { + nvkm_error(subdev, "invalid ramcfg strap\n"); + return -EINVAL; + } + + data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap, + &next->bios); + if (!data) { + nvkm_error(subdev, "invalid/missing rammap entry "); + return -EINVAL; + } + + /* lookup memory timings, if bios says they're present */ + if (next->bios.ramcfg_timing != 0xff) { + data = nvbios_timingEp(bios, next->bios.ramcfg_timing, + &ver, &hdr, &cnt, &len, &next->bios); + if (!data || ver != 0x10 || hdr < 0x12) { + nvkm_error(subdev, "invalid/missing timing entry " + "%02x %04x %02x %02x\n", + strap, data, ver, hdr); + return -EINVAL; + } + nv50_ram_timing_calc(ram, timing); + } else { + nv50_ram_timing_read(ram, timing); + } + + ret = ram_init(hwsq, subdev); + if (ret) + return ret; + + /* Determine ram-specific MR values */ + ram->base.mr[0] = ram_rd32(hwsq, mr[0]); + ram->base.mr[1] = ram_rd32(hwsq, mr[1]); + ram->base.mr[2] = ram_rd32(hwsq, mr[2]); + + switch (ram->base.type) { + case NVKM_RAM_TYPE_GDDR3: + ret = nvkm_gddr3_calc(&ram->base); + break; + default: + ret = -ENOSYS; + break; + } + + if (ret) { + nvkm_error(subdev, "Could not calculate MR\n"); + return ret; + } + + if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02) + ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000); + + /* Always disable this bit during reclock */ + ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000); + + ram_wait_vblank(hwsq); + ram_wr32(hwsq, 0x611200, 0x00003300); + ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */ + ram_nsec(hwsq, 8000); + ram_setf(hwsq, 0x10, 0x00); /* disable fb */ + ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */ + ram_nsec(hwsq, 2000); + + if (next->bios.timing_10_ODT) + nv50_ram_gpio(hwsq, 0x2e, 1); + + ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */ + ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ + ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ + ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */ + ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */ + + ret = nvbios_pll_parse(bios, 0x004008, &mpll); + mpll.vco2.max_freq = 0; + if (ret >= 0) { + ret = nv04_pll_calc(subdev, &mpll, freq, + &N1, &M1, &N2, &M2, &P); + if (ret <= 0) + ret = -EINVAL; + } + + if (ret < 0) + return ret; + + /* XXX: 750MHz seems rather arbitrary */ + if (freq <= 750000) { + r100da0 = 0x00000010; + r004008 = 0x90000000; + } else { + r100da0 = 0x00000000; + r004008 = 0x80000000; + } + + r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16); + + ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000); + /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does + * it have a different rammap bit from DLLoff? */ + ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 | + next->bios.rammap_00_16_40 << 14); + ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1); + ram_mask(hwsq, 0x004008, 0x91ff0000, r004008); + + /* XXX: GDDR3 only? */ + if (subdev->device->chipset >= 0x92) + ram_wr32(hwsq, 0x100da0, r100da0); + + nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ); + ram_nsec(hwsq, 64000); /*XXX*/ + ram_nsec(hwsq, 32000); /*XXX*/ + + ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000); + + ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */ + ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */ + ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */ + + ram_nsec(hwsq, 12000); + + switch (ram->base.type) { + case NVKM_RAM_TYPE_DDR2: + ram_nuke(hwsq, mr[0]); /* force update */ + ram_mask(hwsq, mr[0], 0x000, 0x000); + break; + case NVKM_RAM_TYPE_GDDR3: + ram_nuke(hwsq, mr[1]); /* force update */ + ram_wr32(hwsq, mr[1], ram->base.mr[1]); + ram_nuke(hwsq, mr[0]); /* force update */ + ram_wr32(hwsq, mr[0], ram->base.mr[0]); + break; + default: + break; + } + + ram_mask(hwsq, timing[3], 0xffffffff, timing[3]); + ram_mask(hwsq, timing[1], 0xffffffff, timing[1]); + ram_mask(hwsq, timing[6], 0xffffffff, timing[6]); + ram_mask(hwsq, timing[7], 0xffffffff, timing[7]); + ram_mask(hwsq, timing[8], 0xffffffff, timing[8]); + ram_mask(hwsq, timing[0], 0xffffffff, timing[0]); + ram_mask(hwsq, timing[2], 0xffffffff, timing[2]); + ram_mask(hwsq, timing[4], 0xffffffff, timing[4]); + ram_mask(hwsq, timing[5], 0xffffffff, timing[5]); + + if (!next->bios.ramcfg_00_03_02) + ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000); + ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12); + + /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */ + unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000100; + unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020; + unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100; + unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100; + if (subdev->device->chipset <= 0x96) { + unk710 &= ~0x0000006e; + unk714 &= ~0x00000100; + + if (!next->bios.ramcfg_00_03_08) + unk710 |= 0x00000060; + if (!next->bios.ramcfg_FBVDDQ) + unk714 |= 0x00000100; + if ( next->bios.ramcfg_00_04_04) + unk710 |= 0x0000000e; + } else { + unk710 &= ~0x00000001; + + if (!next->bios.ramcfg_00_03_08) + unk710 |= 0x00000001; + } + + if ( next->bios.ramcfg_00_03_01) + unk71c |= 0x00000100; + if ( next->bios.ramcfg_00_03_02) + unk710 |= 0x00000100; + if (!next->bios.ramcfg_00_03_08) + unk714 |= 0x00000020; + if ( next->bios.ramcfg_00_04_04) + unk714 |= 0x70000000; + if ( next->bios.ramcfg_00_04_20) + unk718 |= 0x00000100; + + ram_mask(hwsq, 0x100714, 0xffffffff, unk714); + ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c); + ram_mask(hwsq, 0x100718, 0xffffffff, unk718); + ram_mask(hwsq, 0x100710, 0xffffffff, unk710); + + /* XXX: G94 does not even test these regs in trace. Harmless we do it, + * but why is it omitted? */ + if (next->bios.rammap_00_16_20) { + ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 | + next->bios.ramcfg_00_06 << 8 | + next->bios.ramcfg_00_05); + ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 | + next->bios.ramcfg_00_08); + ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000); + } else { + ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000); + } + ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]); + + if (!next->bios.timing_10_ODT) + nv50_ram_gpio(hwsq, 0x2e, 0); + + /* Reset DLL */ + if (!next->bios.ramcfg_DLLoff) + nvkm_sddr2_dll_reset(hwsq); + + ram_setf(hwsq, 0x10, 0x01); /* enable fb */ + ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */ + ram_wr32(hwsq, 0x611200, 0x00003330); + ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */ + + if (next->bios.rammap_00_17_02) + ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800); + if (!next->bios.rammap_00_16_40) + ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000); + if (next->bios.ramcfg_00_03_02) + ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000); + if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02) + ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200); + + return 0; +} + +static int +nv50_ram_prog(struct nvkm_ram *base) +{ + struct nv50_ram *ram = nv50_ram(base); + struct nvkm_device *device = ram->base.fb->subdev.device; + ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true)); + return 0; +} + +static void +nv50_ram_tidy(struct nvkm_ram *base) +{ + struct nv50_ram *ram = nv50_ram(base); + ram_exec(&ram->hwsq, false); +} + +static const struct nvkm_ram_func +nv50_ram_func = { + .calc = nv50_ram_calc, + .prog = nv50_ram_prog, + .tidy = nv50_ram_tidy, +}; + +static u32 +nv50_fb_vram_rblock(struct nvkm_ram *ram) +{ + struct nvkm_subdev *subdev = &ram->fb->subdev; + struct nvkm_device *device = subdev->device; + int colbits, rowbitsa, rowbitsb, banks; + u64 rowsize, predicted; + u32 r0, r4, rt, rblock_size; + + r0 = nvkm_rd32(device, 0x100200); + r4 = nvkm_rd32(device, 0x100204); + rt = nvkm_rd32(device, 0x100250); + nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n", + r0, r4, rt, nvkm_rd32(device, 0x001540)); + + colbits = (r4 & 0x0000f000) >> 12; + rowbitsa = ((r4 & 0x000f0000) >> 16) + 8; + rowbitsb = ((r4 & 0x00f00000) >> 20) + 8; + banks = 1 << (((r4 & 0x03000000) >> 24) + 2); + + rowsize = ram->parts * banks * (1 << colbits) * 8; + predicted = rowsize << rowbitsa; + if (r0 & 0x00000004) + predicted += rowsize << rowbitsb; + + if (predicted != ram->size) { + nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n", + (u32)(ram->size >> 20)); + } + + rblock_size = rowsize; + if (rt & 1) + rblock_size *= 3; + + nvkm_debug(subdev, "rblock %d bytes\n", rblock_size); + return rblock_size; +} + +int +nv50_ram_ctor(const struct nvkm_ram_func *func, + struct nvkm_fb *fb, struct nvkm_ram *ram) +{ + struct nvkm_device *device = fb->subdev.device; + struct nvkm_bios *bios = device->bios; + const u32 rsvd_head = ( 256 * 1024); /* vga memory */ + const u32 rsvd_tail = (1024 * 1024); /* vbios etc */ + u64 size = nvkm_rd32(device, 0x10020c); + enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN; + int ret; + + switch (nvkm_rd32(device, 0x100714) & 0x00000007) { + case 0: type = NVKM_RAM_TYPE_DDR1; break; + case 1: + if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3) + type = NVKM_RAM_TYPE_DDR3; + else + type = NVKM_RAM_TYPE_DDR2; + break; + case 2: type = NVKM_RAM_TYPE_GDDR3; break; + case 3: type = NVKM_RAM_TYPE_GDDR4; break; + case 4: type = NVKM_RAM_TYPE_GDDR5; break; + default: + break; + } + + size = (size & 0x000000ff) << 32 | (size & 0xffffff00); + + ret = nvkm_ram_ctor(func, fb, type, size, ram); + if (ret) + return ret; + + ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16; + ram->parts = hweight8(ram->part_mask); + ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1; + nvkm_mm_fini(&ram->vram); + + return nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL, + rsvd_head >> NVKM_RAM_MM_SHIFT, + (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT, + nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT); +} + +int +nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram) +{ + struct nv50_ram *ram; + int ret, i; + + if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL))) + return -ENOMEM; + *pram = &ram->base; + + ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base); + if (ret) + return ret; + + ram->hwsq.r_0x002504 = hwsq_reg(0x002504); + ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040); + ram->hwsq.r_0x004008 = hwsq_reg(0x004008); + ram->hwsq.r_0x00400c = hwsq_reg(0x00400c); + ram->hwsq.r_0x100200 = hwsq_reg(0x100200); + ram->hwsq.r_0x100210 = hwsq_reg(0x100210); + ram->hwsq.r_0x10021c = hwsq_reg(0x10021c); + ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0); + ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4); + ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc); + ram->hwsq.r_0x10053c = hwsq_reg(0x10053c); + ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0); + ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4); + ram->hwsq.r_0x100710 = hwsq_reg(0x100710); + ram->hwsq.r_0x100714 = hwsq_reg(0x100714); + ram->hwsq.r_0x100718 = hwsq_reg(0x100718); + ram->hwsq.r_0x10071c = hwsq_reg(0x10071c); + ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask); + ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20); + ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24); + ram->hwsq.r_0x611200 = hwsq_reg(0x611200); + + for (i = 0; i < 9; i++) + ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04)); + + if (ram->base.ranks > 1) { + ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8); + ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc); + ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8); + ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec); + } else { + ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0); + ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4); + ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0); + ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4); + } + + ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104); + ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108); + ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120); + ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124); + + return 0; +} |
