diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /fs/xfs/scrub/refcount.c | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to '')
-rw-r--r-- | fs/xfs/scrub/refcount.c | 473 |
1 files changed, 473 insertions, 0 deletions
diff --git a/fs/xfs/scrub/refcount.c b/fs/xfs/scrub/refcount.c new file mode 100644 index 000000000..d9c1b3cea --- /dev/null +++ b/fs/xfs/scrub/refcount.c @@ -0,0 +1,473 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright (C) 2017 Oracle. All Rights Reserved. + * Author: Darrick J. Wong <darrick.wong@oracle.com> + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_shared.h" +#include "xfs_format.h" +#include "xfs_btree.h" +#include "xfs_rmap.h" +#include "xfs_refcount.h" +#include "scrub/scrub.h" +#include "scrub/common.h" +#include "scrub/btree.h" +#include "xfs_trans_resv.h" +#include "xfs_mount.h" +#include "xfs_ag.h" + +/* + * Set us up to scrub reference count btrees. + */ +int +xchk_setup_ag_refcountbt( + struct xfs_scrub *sc) +{ + return xchk_setup_ag_btree(sc, false); +} + +/* Reference count btree scrubber. */ + +/* + * Confirming Reference Counts via Reverse Mappings + * + * We want to count the reverse mappings overlapping a refcount record + * (bno, len, refcount), allowing for the possibility that some of the + * overlap may come from smaller adjoining reverse mappings, while some + * comes from single extents which overlap the range entirely. The + * outer loop is as follows: + * + * 1. For all reverse mappings overlapping the refcount extent, + * a. If a given rmap completely overlaps, mark it as seen. + * b. Otherwise, record the fragment (in agbno order) for later + * processing. + * + * Once we've seen all the rmaps, we know that for all blocks in the + * refcount record we want to find $refcount owners and we've already + * visited $seen extents that overlap all the blocks. Therefore, we + * need to find ($refcount - $seen) owners for every block in the + * extent; call that quantity $target_nr. Proceed as follows: + * + * 2. Pull the first $target_nr fragments from the list; all of them + * should start at or before the start of the extent. + * Call this subset of fragments the working set. + * 3. Until there are no more unprocessed fragments, + * a. Find the shortest fragments in the set and remove them. + * b. Note the block number of the end of these fragments. + * c. Pull the same number of fragments from the list. All of these + * fragments should start at the block number recorded in the + * previous step. + * d. Put those fragments in the set. + * 4. Check that there are $target_nr fragments remaining in the list, + * and that they all end at or beyond the end of the refcount extent. + * + * If the refcount is correct, all the check conditions in the algorithm + * should always hold true. If not, the refcount is incorrect. + */ +struct xchk_refcnt_frag { + struct list_head list; + struct xfs_rmap_irec rm; +}; + +struct xchk_refcnt_check { + struct xfs_scrub *sc; + struct list_head fragments; + + /* refcount extent we're examining */ + xfs_agblock_t bno; + xfs_extlen_t len; + xfs_nlink_t refcount; + + /* number of owners seen */ + xfs_nlink_t seen; +}; + +/* + * Decide if the given rmap is large enough that we can redeem it + * towards refcount verification now, or if it's a fragment, in + * which case we'll hang onto it in the hopes that we'll later + * discover that we've collected exactly the correct number of + * fragments as the refcountbt says we should have. + */ +STATIC int +xchk_refcountbt_rmap_check( + struct xfs_btree_cur *cur, + const struct xfs_rmap_irec *rec, + void *priv) +{ + struct xchk_refcnt_check *refchk = priv; + struct xchk_refcnt_frag *frag; + xfs_agblock_t rm_last; + xfs_agblock_t rc_last; + int error = 0; + + if (xchk_should_terminate(refchk->sc, &error)) + return error; + + rm_last = rec->rm_startblock + rec->rm_blockcount - 1; + rc_last = refchk->bno + refchk->len - 1; + + /* Confirm that a single-owner refc extent is a CoW stage. */ + if (refchk->refcount == 1 && rec->rm_owner != XFS_RMAP_OWN_COW) { + xchk_btree_xref_set_corrupt(refchk->sc, cur, 0); + return 0; + } + + if (rec->rm_startblock <= refchk->bno && rm_last >= rc_last) { + /* + * The rmap overlaps the refcount record, so we can confirm + * one refcount owner seen. + */ + refchk->seen++; + } else { + /* + * This rmap covers only part of the refcount record, so + * save the fragment for later processing. If the rmapbt + * is healthy each rmap_irec we see will be in agbno order + * so we don't need insertion sort here. + */ + frag = kmalloc(sizeof(struct xchk_refcnt_frag), + XCHK_GFP_FLAGS); + if (!frag) + return -ENOMEM; + memcpy(&frag->rm, rec, sizeof(frag->rm)); + list_add_tail(&frag->list, &refchk->fragments); + } + + return 0; +} + +/* + * Given a bunch of rmap fragments, iterate through them, keeping + * a running tally of the refcount. If this ever deviates from + * what we expect (which is the refcountbt's refcount minus the + * number of extents that totally covered the refcountbt extent), + * we have a refcountbt error. + */ +STATIC void +xchk_refcountbt_process_rmap_fragments( + struct xchk_refcnt_check *refchk) +{ + struct list_head worklist; + struct xchk_refcnt_frag *frag; + struct xchk_refcnt_frag *n; + xfs_agblock_t bno; + xfs_agblock_t rbno; + xfs_agblock_t next_rbno; + xfs_nlink_t nr; + xfs_nlink_t target_nr; + + target_nr = refchk->refcount - refchk->seen; + if (target_nr == 0) + return; + + /* + * There are (refchk->rc.rc_refcount - refchk->nr refcount) + * references we haven't found yet. Pull that many off the + * fragment list and figure out where the smallest rmap ends + * (and therefore the next rmap should start). All the rmaps + * we pull off should start at or before the beginning of the + * refcount record's range. + */ + INIT_LIST_HEAD(&worklist); + rbno = NULLAGBLOCK; + + /* Make sure the fragments actually /are/ in agbno order. */ + bno = 0; + list_for_each_entry(frag, &refchk->fragments, list) { + if (frag->rm.rm_startblock < bno) + goto done; + bno = frag->rm.rm_startblock; + } + + /* + * Find all the rmaps that start at or before the refc extent, + * and put them on the worklist. + */ + nr = 0; + list_for_each_entry_safe(frag, n, &refchk->fragments, list) { + if (frag->rm.rm_startblock > refchk->bno || nr > target_nr) + break; + bno = frag->rm.rm_startblock + frag->rm.rm_blockcount; + if (bno < rbno) + rbno = bno; + list_move_tail(&frag->list, &worklist); + nr++; + } + + /* + * We should have found exactly $target_nr rmap fragments starting + * at or before the refcount extent. + */ + if (nr != target_nr) + goto done; + + while (!list_empty(&refchk->fragments)) { + /* Discard any fragments ending at rbno from the worklist. */ + nr = 0; + next_rbno = NULLAGBLOCK; + list_for_each_entry_safe(frag, n, &worklist, list) { + bno = frag->rm.rm_startblock + frag->rm.rm_blockcount; + if (bno != rbno) { + if (bno < next_rbno) + next_rbno = bno; + continue; + } + list_del(&frag->list); + kfree(frag); + nr++; + } + + /* Try to add nr rmaps starting at rbno to the worklist. */ + list_for_each_entry_safe(frag, n, &refchk->fragments, list) { + bno = frag->rm.rm_startblock + frag->rm.rm_blockcount; + if (frag->rm.rm_startblock != rbno) + goto done; + list_move_tail(&frag->list, &worklist); + if (next_rbno > bno) + next_rbno = bno; + nr--; + if (nr == 0) + break; + } + + /* + * If we get here and nr > 0, this means that we added fewer + * items to the worklist than we discarded because the fragment + * list ran out of items. Therefore, we cannot maintain the + * required refcount. Something is wrong, so we're done. + */ + if (nr) + goto done; + + rbno = next_rbno; + } + + /* + * Make sure the last extent we processed ends at or beyond + * the end of the refcount extent. + */ + if (rbno < refchk->bno + refchk->len) + goto done; + + /* Actually record us having seen the remaining refcount. */ + refchk->seen = refchk->refcount; +done: + /* Delete fragments and work list. */ + list_for_each_entry_safe(frag, n, &worklist, list) { + list_del(&frag->list); + kfree(frag); + } + list_for_each_entry_safe(frag, n, &refchk->fragments, list) { + list_del(&frag->list); + kfree(frag); + } +} + +/* Use the rmap entries covering this extent to verify the refcount. */ +STATIC void +xchk_refcountbt_xref_rmap( + struct xfs_scrub *sc, + const struct xfs_refcount_irec *irec) +{ + struct xchk_refcnt_check refchk = { + .sc = sc, + .bno = irec->rc_startblock, + .len = irec->rc_blockcount, + .refcount = irec->rc_refcount, + .seen = 0, + }; + struct xfs_rmap_irec low; + struct xfs_rmap_irec high; + struct xchk_refcnt_frag *frag; + struct xchk_refcnt_frag *n; + int error; + + if (!sc->sa.rmap_cur || xchk_skip_xref(sc->sm)) + return; + + /* Cross-reference with the rmapbt to confirm the refcount. */ + memset(&low, 0, sizeof(low)); + low.rm_startblock = irec->rc_startblock; + memset(&high, 0xFF, sizeof(high)); + high.rm_startblock = irec->rc_startblock + irec->rc_blockcount - 1; + + INIT_LIST_HEAD(&refchk.fragments); + error = xfs_rmap_query_range(sc->sa.rmap_cur, &low, &high, + &xchk_refcountbt_rmap_check, &refchk); + if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur)) + goto out_free; + + xchk_refcountbt_process_rmap_fragments(&refchk); + if (irec->rc_refcount != refchk.seen) + xchk_btree_xref_set_corrupt(sc, sc->sa.rmap_cur, 0); + +out_free: + list_for_each_entry_safe(frag, n, &refchk.fragments, list) { + list_del(&frag->list); + kfree(frag); + } +} + +/* Cross-reference with the other btrees. */ +STATIC void +xchk_refcountbt_xref( + struct xfs_scrub *sc, + const struct xfs_refcount_irec *irec) +{ + if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) + return; + + xchk_xref_is_used_space(sc, irec->rc_startblock, irec->rc_blockcount); + xchk_xref_is_not_inode_chunk(sc, irec->rc_startblock, + irec->rc_blockcount); + xchk_refcountbt_xref_rmap(sc, irec); +} + +/* Scrub a refcountbt record. */ +STATIC int +xchk_refcountbt_rec( + struct xchk_btree *bs, + const union xfs_btree_rec *rec) +{ + struct xfs_refcount_irec irec; + xfs_agblock_t *cow_blocks = bs->private; + struct xfs_perag *pag = bs->cur->bc_ag.pag; + + xfs_refcount_btrec_to_irec(rec, &irec); + + /* Check the domain and refcount are not incompatible. */ + if (!xfs_refcount_check_domain(&irec)) + xchk_btree_set_corrupt(bs->sc, bs->cur, 0); + + if (irec.rc_domain == XFS_REFC_DOMAIN_COW) + (*cow_blocks) += irec.rc_blockcount; + + /* Check the extent. */ + if (!xfs_verify_agbext(pag, irec.rc_startblock, irec.rc_blockcount)) + xchk_btree_set_corrupt(bs->sc, bs->cur, 0); + + if (irec.rc_refcount == 0) + xchk_btree_set_corrupt(bs->sc, bs->cur, 0); + + xchk_refcountbt_xref(bs->sc, &irec); + + return 0; +} + +/* Make sure we have as many refc blocks as the rmap says. */ +STATIC void +xchk_refcount_xref_rmap( + struct xfs_scrub *sc, + xfs_filblks_t cow_blocks) +{ + xfs_extlen_t refcbt_blocks = 0; + xfs_filblks_t blocks; + int error; + + if (!sc->sa.rmap_cur || xchk_skip_xref(sc->sm)) + return; + + /* Check that we saw as many refcbt blocks as the rmap knows about. */ + error = xfs_btree_count_blocks(sc->sa.refc_cur, &refcbt_blocks); + if (!xchk_btree_process_error(sc, sc->sa.refc_cur, 0, &error)) + return; + error = xchk_count_rmap_ownedby_ag(sc, sc->sa.rmap_cur, + &XFS_RMAP_OINFO_REFC, &blocks); + if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur)) + return; + if (blocks != refcbt_blocks) + xchk_btree_xref_set_corrupt(sc, sc->sa.rmap_cur, 0); + + /* Check that we saw as many cow blocks as the rmap knows about. */ + error = xchk_count_rmap_ownedby_ag(sc, sc->sa.rmap_cur, + &XFS_RMAP_OINFO_COW, &blocks); + if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur)) + return; + if (blocks != cow_blocks) + xchk_btree_xref_set_corrupt(sc, sc->sa.rmap_cur, 0); +} + +/* Scrub the refcount btree for some AG. */ +int +xchk_refcountbt( + struct xfs_scrub *sc) +{ + xfs_agblock_t cow_blocks = 0; + int error; + + error = xchk_btree(sc, sc->sa.refc_cur, xchk_refcountbt_rec, + &XFS_RMAP_OINFO_REFC, &cow_blocks); + if (error) + return error; + + xchk_refcount_xref_rmap(sc, cow_blocks); + + return 0; +} + +/* xref check that a cow staging extent is marked in the refcountbt. */ +void +xchk_xref_is_cow_staging( + struct xfs_scrub *sc, + xfs_agblock_t agbno, + xfs_extlen_t len) +{ + struct xfs_refcount_irec rc; + int has_refcount; + int error; + + if (!sc->sa.refc_cur || xchk_skip_xref(sc->sm)) + return; + + /* Find the CoW staging extent. */ + error = xfs_refcount_lookup_le(sc->sa.refc_cur, XFS_REFC_DOMAIN_COW, + agbno, &has_refcount); + if (!xchk_should_check_xref(sc, &error, &sc->sa.refc_cur)) + return; + if (!has_refcount) { + xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0); + return; + } + + error = xfs_refcount_get_rec(sc->sa.refc_cur, &rc, &has_refcount); + if (!xchk_should_check_xref(sc, &error, &sc->sa.refc_cur)) + return; + if (!has_refcount) { + xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0); + return; + } + + /* CoW lookup returned a shared extent record? */ + if (rc.rc_domain != XFS_REFC_DOMAIN_COW) + xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0); + + /* Must be at least as long as what was passed in */ + if (rc.rc_blockcount < len) + xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0); +} + +/* + * xref check that the extent is not shared. Only file data blocks + * can have multiple owners. + */ +void +xchk_xref_is_not_shared( + struct xfs_scrub *sc, + xfs_agblock_t agbno, + xfs_extlen_t len) +{ + bool shared; + int error; + + if (!sc->sa.refc_cur || xchk_skip_xref(sc->sm)) + return; + + error = xfs_refcount_has_record(sc->sa.refc_cur, XFS_REFC_DOMAIN_SHARED, + agbno, len, &shared); + if (!xchk_should_check_xref(sc, &error, &sc->sa.refc_cur)) + return; + if (shared) + xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0); +} |