From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- .../admin-guide/device-mapper/dm-zoned.rst | 194 +++++++++++++++++++++ 1 file changed, 194 insertions(+) create mode 100644 Documentation/admin-guide/device-mapper/dm-zoned.rst (limited to 'Documentation/admin-guide/device-mapper/dm-zoned.rst') diff --git a/Documentation/admin-guide/device-mapper/dm-zoned.rst b/Documentation/admin-guide/device-mapper/dm-zoned.rst new file mode 100644 index 000000000..0fac051ca --- /dev/null +++ b/Documentation/admin-guide/device-mapper/dm-zoned.rst @@ -0,0 +1,194 @@ +======== +dm-zoned +======== + +The dm-zoned device mapper target exposes a zoned block device (ZBC and +ZAC compliant devices) as a regular block device without any write +pattern constraints. In effect, it implements a drive-managed zoned +block device which hides from the user (a file system or an application +doing raw block device accesses) the sequential write constraints of +host-managed zoned block devices and can mitigate the potential +device-side performance degradation due to excessive random writes on +host-aware zoned block devices. + +For a more detailed description of the zoned block device models and +their constraints see (for SCSI devices): + +https://www.t10.org/drafts.htm#ZBC_Family + +and (for ATA devices): + +http://www.t13.org/Documents/UploadedDocuments/docs2015/di537r05-Zoned_Device_ATA_Command_Set_ZAC.pdf + +The dm-zoned implementation is simple and minimizes system overhead (CPU +and memory usage as well as storage capacity loss). For a 10TB +host-managed disk with 256 MB zones, dm-zoned memory usage per disk +instance is at most 4.5 MB and as little as 5 zones will be used +internally for storing metadata and performing reclaim operations. + +dm-zoned target devices are formatted and checked using the dmzadm +utility available at: + +https://github.com/hgst/dm-zoned-tools + +Algorithm +========= + +dm-zoned implements an on-disk buffering scheme to handle non-sequential +write accesses to the sequential zones of a zoned block device. +Conventional zones are used for caching as well as for storing internal +metadata. It can also use a regular block device together with the zoned +block device; in that case the regular block device will be split logically +in zones with the same size as the zoned block device. These zones will be +placed in front of the zones from the zoned block device and will be handled +just like conventional zones. + +The zones of the device(s) are separated into 2 types: + +1) Metadata zones: these are conventional zones used to store metadata. +Metadata zones are not reported as useable capacity to the user. + +2) Data zones: all remaining zones, the vast majority of which will be +sequential zones used exclusively to store user data. The conventional +zones of the device may be used also for buffering user random writes. +Data in these zones may be directly mapped to the conventional zone, but +later moved to a sequential zone so that the conventional zone can be +reused for buffering incoming random writes. + +dm-zoned exposes a logical device with a sector size of 4096 bytes, +irrespective of the physical sector size of the backend zoned block +device being used. This allows reducing the amount of metadata needed to +manage valid blocks (blocks written). + +The on-disk metadata format is as follows: + +1) The first block of the first conventional zone found contains the +super block which describes the on disk amount and position of metadata +blocks. + +2) Following the super block, a set of blocks is used to describe the +mapping of the logical device blocks. The mapping is done per chunk of +blocks, with the chunk size equal to the zoned block device size. The +mapping table is indexed by chunk number and each mapping entry +indicates the zone number of the device storing the chunk of data. Each +mapping entry may also indicate if the zone number of a conventional +zone used to buffer random modification to the data zone. + +3) A set of blocks used to store bitmaps indicating the validity of +blocks in the data zones follows the mapping table. A valid block is +defined as a block that was written and not discarded. For a buffered +data chunk, a block is always valid only in the data zone mapping the +chunk or in the buffer zone of the chunk. + +For a logical chunk mapped to a conventional zone, all write operations +are processed by directly writing to the zone. If the mapping zone is a +sequential zone, the write operation is processed directly only if the +write offset within the logical chunk is equal to the write pointer +offset within of the sequential data zone (i.e. the write operation is +aligned on the zone write pointer). Otherwise, write operations are +processed indirectly using a buffer zone. In that case, an unused +conventional zone is allocated and assigned to the chunk being +accessed. Writing a block to the buffer zone of a chunk will +automatically invalidate the same block in the sequential zone mapping +the chunk. If all blocks of the sequential zone become invalid, the zone +is freed and the chunk buffer zone becomes the primary zone mapping the +chunk, resulting in native random write performance similar to a regular +block device. + +Read operations are processed according to the block validity +information provided by the bitmaps. Valid blocks are read either from +the sequential zone mapping a chunk, or if the chunk is buffered, from +the buffer zone assigned. If the accessed chunk has no mapping, or the +accessed blocks are invalid, the read buffer is zeroed and the read +operation terminated. + +After some time, the limited number of conventional zones available may +be exhausted (all used to map chunks or buffer sequential zones) and +unaligned writes to unbuffered chunks become impossible. To avoid this +situation, a reclaim process regularly scans used conventional zones and +tries to reclaim the least recently used zones by copying the valid +blocks of the buffer zone to a free sequential zone. Once the copy +completes, the chunk mapping is updated to point to the sequential zone +and the buffer zone freed for reuse. + +Metadata Protection +=================== + +To protect metadata against corruption in case of sudden power loss or +system crash, 2 sets of metadata zones are used. One set, the primary +set, is used as the main metadata region, while the secondary set is +used as a staging area. Modified metadata is first written to the +secondary set and validated by updating the super block in the secondary +set, a generation counter is used to indicate that this set contains the +newest metadata. Once this operation completes, in place of metadata +block updates can be done in the primary metadata set. This ensures that +one of the set is always consistent (all modifications committed or none +at all). Flush operations are used as a commit point. Upon reception of +a flush request, metadata modification activity is temporarily blocked +(for both incoming BIO processing and reclaim process) and all dirty +metadata blocks are staged and updated. Normal operation is then +resumed. Flushing metadata thus only temporarily delays write and +discard requests. Read requests can be processed concurrently while +metadata flush is being executed. + +If a regular device is used in conjunction with the zoned block device, +a third set of metadata (without the zone bitmaps) is written to the +start of the zoned block device. This metadata has a generation counter of +'0' and will never be updated during normal operation; it just serves for +identification purposes. The first and second copy of the metadata +are located at the start of the regular block device. + +Usage +===== + +A zoned block device must first be formatted using the dmzadm tool. This +will analyze the device zone configuration, determine where to place the +metadata sets on the device and initialize the metadata sets. + +Ex:: + + dmzadm --format /dev/sdxx + + +If two drives are to be used, both devices must be specified, with the +regular block device as the first device. + +Ex:: + + dmzadm --format /dev/sdxx /dev/sdyy + + +Formatted device(s) can be started with the dmzadm utility, too.: + +Ex:: + + dmzadm --start /dev/sdxx /dev/sdyy + + +Information about the internal layout and current usage of the zones can +be obtained with the 'status' callback from dmsetup: + +Ex:: + + dmsetup status /dev/dm-X + +will return a line + + 0 zoned zones / random / sequential + +where is the total number of zones, is the number +of unmapped (ie free) random zones, the total number of zones, + the number of unmapped sequential zones, and the +total number of sequential zones. + +Normally the reclaim process will be started once there are less than 50 +percent free random zones. In order to start the reclaim process manually +even before reaching this threshold the 'dmsetup message' function can be +used: + +Ex:: + + dmsetup message /dev/dm-X 0 reclaim + +will start the reclaim process and random zones will be moved to sequential +zones. -- cgit v1.2.3