From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- Documentation/arm/sa1100/assabet.rst | 301 +++++++++++++++++++++++++++++++ Documentation/arm/sa1100/cerf.rst | 35 ++++ Documentation/arm/sa1100/index.rst | 13 ++ Documentation/arm/sa1100/lart.rst | 15 ++ Documentation/arm/sa1100/serial_uart.rst | 51 ++++++ 5 files changed, 415 insertions(+) create mode 100644 Documentation/arm/sa1100/assabet.rst create mode 100644 Documentation/arm/sa1100/cerf.rst create mode 100644 Documentation/arm/sa1100/index.rst create mode 100644 Documentation/arm/sa1100/lart.rst create mode 100644 Documentation/arm/sa1100/serial_uart.rst (limited to 'Documentation/arm/sa1100') diff --git a/Documentation/arm/sa1100/assabet.rst b/Documentation/arm/sa1100/assabet.rst new file mode 100644 index 000000000..a761e128f --- /dev/null +++ b/Documentation/arm/sa1100/assabet.rst @@ -0,0 +1,301 @@ +============================================ +The Intel Assabet (SA-1110 evaluation) board +============================================ + +Please see: +http://developer.intel.com + +Also some notes from John G Dorsey : +http://www.cs.cmu.edu/~wearable/software/assabet.html + + +Building the kernel +------------------- + +To build the kernel with current defaults:: + + make assabet_defconfig + make oldconfig + make zImage + +The resulting kernel image should be available in linux/arch/arm/boot/zImage. + + +Installing a bootloader +----------------------- + +A couple of bootloaders able to boot Linux on Assabet are available: + +BLOB (http://www.lartmaker.nl/lartware/blob/) + + BLOB is a bootloader used within the LART project. Some contributed + patches were merged into BLOB to add support for Assabet. + +Compaq's Bootldr + John Dorsey's patch for Assabet support +(http://www.handhelds.org/Compaq/bootldr.html) +(http://www.wearablegroup.org/software/bootldr/) + + Bootldr is the bootloader developed by Compaq for the iPAQ Pocket PC. + John Dorsey has produced add-on patches to add support for Assabet and + the JFFS filesystem. + +RedBoot (http://sources.redhat.com/redboot/) + + RedBoot is a bootloader developed by Red Hat based on the eCos RTOS + hardware abstraction layer. It supports Assabet amongst many other + hardware platforms. + +RedBoot is currently the recommended choice since it's the only one to have +networking support, and is the most actively maintained. + +Brief examples on how to boot Linux with RedBoot are shown below. But first +you need to have RedBoot installed in your flash memory. A known to work +precompiled RedBoot binary is available from the following location: + +- ftp://ftp.netwinder.org/users/n/nico/ +- ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/nico/ +- ftp://ftp.handhelds.org/pub/linux/arm/sa-1100-patches/ + +Look for redboot-assabet*.tgz. Some installation infos are provided in +redboot-assabet*.txt. + + +Initial RedBoot configuration +----------------------------- + +The commands used here are explained in The RedBoot User's Guide available +on-line at http://sources.redhat.com/ecos/docs.html. +Please refer to it for explanations. + +If you have a CF network card (my Assabet kit contained a CF+ LP-E from +Socket Communications Inc.), you should strongly consider using it for TFTP +file transfers. You must insert it before RedBoot runs since it can't detect +it dynamically. + +To initialize the flash directory:: + + fis init -f + +To initialize the non-volatile settings, like whether you want to use BOOTP or +a static IP address, etc, use this command:: + + fconfig -i + + +Writing a kernel image into flash +--------------------------------- + +First, the kernel image must be loaded into RAM. If you have the zImage file +available on a TFTP server:: + + load zImage -r -b 0x100000 + +If you rather want to use Y-Modem upload over the serial port:: + + load -m ymodem -r -b 0x100000 + +To write it to flash:: + + fis create "Linux kernel" -b 0x100000 -l 0xc0000 + + +Booting the kernel +------------------ + +The kernel still requires a filesystem to boot. A ramdisk image can be loaded +as follows:: + + load ramdisk_image.gz -r -b 0x800000 + +Again, Y-Modem upload can be used instead of TFTP by replacing the file name +by '-y ymodem'. + +Now the kernel can be retrieved from flash like this:: + + fis load "Linux kernel" + +or loaded as described previously. To boot the kernel:: + + exec -b 0x100000 -l 0xc0000 + +The ramdisk image could be stored into flash as well, but there are better +solutions for on-flash filesystems as mentioned below. + + +Using JFFS2 +----------- + +Using JFFS2 (the Second Journalling Flash File System) is probably the most +convenient way to store a writable filesystem into flash. JFFS2 is used in +conjunction with the MTD layer which is responsible for low-level flash +management. More information on the Linux MTD can be found on-line at: +http://www.linux-mtd.infradead.org/. A JFFS howto with some infos about +creating JFFS/JFFS2 images is available from the same site. + +For instance, a sample JFFS2 image can be retrieved from the same FTP sites +mentioned below for the precompiled RedBoot image. + +To load this file:: + + load sample_img.jffs2 -r -b 0x100000 + +The result should look like:: + + RedBoot> load sample_img.jffs2 -r -b 0x100000 + Raw file loaded 0x00100000-0x00377424 + +Now we must know the size of the unallocated flash:: + + fis free + +Result:: + + RedBoot> fis free + 0x500E0000 .. 0x503C0000 + +The values above may be different depending on the size of the filesystem and +the type of flash. See their usage below as an example and take care of +substituting yours appropriately. + +We must determine some values:: + + size of unallocated flash: 0x503c0000 - 0x500e0000 = 0x2e0000 + size of the filesystem image: 0x00377424 - 0x00100000 = 0x277424 + +We want to fit the filesystem image of course, but we also want to give it all +the remaining flash space as well. To write it:: + + fis unlock -f 0x500E0000 -l 0x2e0000 + fis erase -f 0x500E0000 -l 0x2e0000 + fis write -b 0x100000 -l 0x277424 -f 0x500E0000 + fis create "JFFS2" -n -f 0x500E0000 -l 0x2e0000 + +Now the filesystem is associated to a MTD "partition" once Linux has discovered +what they are in the boot process. From Redboot, the 'fis list' command +displays them:: + + RedBoot> fis list + Name FLASH addr Mem addr Length Entry point + RedBoot 0x50000000 0x50000000 0x00020000 0x00000000 + RedBoot config 0x503C0000 0x503C0000 0x00020000 0x00000000 + FIS directory 0x503E0000 0x503E0000 0x00020000 0x00000000 + Linux kernel 0x50020000 0x00100000 0x000C0000 0x00000000 + JFFS2 0x500E0000 0x500E0000 0x002E0000 0x00000000 + +However Linux should display something like:: + + SA1100 flash: probing 32-bit flash bus + SA1100 flash: Found 2 x16 devices at 0x0 in 32-bit mode + Using RedBoot partition definition + Creating 5 MTD partitions on "SA1100 flash": + 0x00000000-0x00020000 : "RedBoot" + 0x00020000-0x000e0000 : "Linux kernel" + 0x000e0000-0x003c0000 : "JFFS2" + 0x003c0000-0x003e0000 : "RedBoot config" + 0x003e0000-0x00400000 : "FIS directory" + +What's important here is the position of the partition we are interested in, +which is the third one. Within Linux, this correspond to /dev/mtdblock2. +Therefore to boot Linux with the kernel and its root filesystem in flash, we +need this RedBoot command:: + + fis load "Linux kernel" + exec -b 0x100000 -l 0xc0000 -c "root=/dev/mtdblock2" + +Of course other filesystems than JFFS might be used, like cramfs for example. +You might want to boot with a root filesystem over NFS, etc. It is also +possible, and sometimes more convenient, to flash a filesystem directly from +within Linux while booted from a ramdisk or NFS. The Linux MTD repository has +many tools to deal with flash memory as well, to erase it for example. JFFS2 +can then be mounted directly on a freshly erased partition and files can be +copied over directly. Etc... + + +RedBoot scripting +----------------- + +All the commands above aren't so useful if they have to be typed in every +time the Assabet is rebooted. Therefore it's possible to automate the boot +process using RedBoot's scripting capability. + +For example, I use this to boot Linux with both the kernel and the ramdisk +images retrieved from a TFTP server on the network:: + + RedBoot> fconfig + Run script at boot: false true + Boot script: + Enter script, terminate with empty line + >> load zImage -r -b 0x100000 + >> load ramdisk_ks.gz -r -b 0x800000 + >> exec -b 0x100000 -l 0xc0000 + >> + Boot script timeout (1000ms resolution): 3 + Use BOOTP for network configuration: true + GDB connection port: 9000 + Network debug at boot time: false + Update RedBoot non-volatile configuration - are you sure (y/n)? y + +Then, rebooting the Assabet is just a matter of waiting for the login prompt. + + + +Nicolas Pitre +nico@fluxnic.net + +June 12, 2001 + + +Status of peripherals in -rmk tree (updated 14/10/2001) +------------------------------------------------------- + +Assabet: + Serial ports: + Radio: TX, RX, CTS, DSR, DCD, RI + - PM: Not tested. + - COM: TX, RX, CTS, DSR, DCD, RTS, DTR, PM + - PM: Not tested. + - I2C: Implemented, not fully tested. + - L3: Fully tested, pass. + - PM: Not tested. + + Video: + - LCD: Fully tested. PM + + (LCD doesn't like being blanked with neponset connected) + + - Video out: Not fully + + Audio: + UDA1341: + - Playback: Fully tested, pass. + - Record: Implemented, not tested. + - PM: Not tested. + + UCB1200: + - Audio play: Implemented, not heavily tested. + - Audio rec: Implemented, not heavily tested. + - Telco audio play: Implemented, not heavily tested. + - Telco audio rec: Implemented, not heavily tested. + - POTS control: No + - Touchscreen: Yes + - PM: Not tested. + + Other: + - PCMCIA: + - LPE: Fully tested, pass. + - USB: No + - IRDA: + - SIR: Fully tested, pass. + - FIR: Fully tested, pass. + - PM: Not tested. + +Neponset: + Serial ports: + - COM1,2: TX, RX, CTS, DSR, DCD, RTS, DTR + - PM: Not tested. + - USB: Implemented, not heavily tested. + - PCMCIA: Implemented, not heavily tested. + - CF: Implemented, not heavily tested. + - PM: Not tested. + +More stuff can be found in the -np (Nicolas Pitre's) tree. diff --git a/Documentation/arm/sa1100/cerf.rst b/Documentation/arm/sa1100/cerf.rst new file mode 100644 index 000000000..7fa71b609 --- /dev/null +++ b/Documentation/arm/sa1100/cerf.rst @@ -0,0 +1,35 @@ +============== +CerfBoard/Cube +============== + +*** The StrongARM version of the CerfBoard/Cube has been discontinued *** + +The Intrinsyc CerfBoard is a StrongARM 1110-based computer on a board +that measures approximately 2" square. It includes an Ethernet +controller, an RS232-compatible serial port, a USB function port, and +one CompactFlash+ slot on the back. Pictures can be found at the +Intrinsyc website, http://www.intrinsyc.com. + +This document describes the support in the Linux kernel for the +Intrinsyc CerfBoard. + +Supported in this version +========================= + + - CompactFlash+ slot (select PCMCIA in General Setup and any options + that may be required) + - Onboard Crystal CS8900 Ethernet controller (Cerf CS8900A support in + Network Devices) + - Serial ports with a serial console (hardcoded to 38400 8N1) + +In order to get this kernel onto your Cerf, you need a server that runs +both BOOTP and TFTP. Detailed instructions should have come with your +evaluation kit on how to use the bootloader. This series of commands +will suffice:: + + make ARCH=arm CROSS_COMPILE=arm-linux- cerfcube_defconfig + make ARCH=arm CROSS_COMPILE=arm-linux- zImage + make ARCH=arm CROSS_COMPILE=arm-linux- modules + cp arch/arm/boot/zImage + +support@intrinsyc.com diff --git a/Documentation/arm/sa1100/index.rst b/Documentation/arm/sa1100/index.rst new file mode 100644 index 000000000..c9aed4328 --- /dev/null +++ b/Documentation/arm/sa1100/index.rst @@ -0,0 +1,13 @@ +.. SPDX-License-Identifier: GPL-2.0 + +==================== +Intel StrongARM 1100 +==================== + +.. toctree:: + :maxdepth: 1 + + assabet + cerf + lart + serial_uart diff --git a/Documentation/arm/sa1100/lart.rst b/Documentation/arm/sa1100/lart.rst new file mode 100644 index 000000000..94c0568d1 --- /dev/null +++ b/Documentation/arm/sa1100/lart.rst @@ -0,0 +1,15 @@ +==================================== +Linux Advanced Radio Terminal (LART) +==================================== + +The LART is a small (7.5 x 10cm) SA-1100 board, designed for embedded +applications. It has 32 MB DRAM, 4MB Flash ROM, double RS232 and all +other StrongARM-gadgets. Almost all SA signals are directly accessible +through a number of connectors. The powersupply accepts voltages +between 3.5V and 16V and is overdimensioned to support a range of +daughterboards. A quad Ethernet / IDE / PS2 / sound daughterboard +is under development, with plenty of others in different stages of +planning. + +The hardware designs for this board have been released under an open license; +see the LART page at http://www.lartmaker.nl/ for more information. diff --git a/Documentation/arm/sa1100/serial_uart.rst b/Documentation/arm/sa1100/serial_uart.rst new file mode 100644 index 000000000..ea983642b --- /dev/null +++ b/Documentation/arm/sa1100/serial_uart.rst @@ -0,0 +1,51 @@ +================== +SA1100 serial port +================== + +The SA1100 serial port had its major/minor numbers officially assigned:: + + > Date: Sun, 24 Sep 2000 21:40:27 -0700 + > From: H. Peter Anvin + > To: Nicolas Pitre + > Cc: Device List Maintainer + > Subject: Re: device + > + > Okay. Note that device numbers 204 and 205 are used for "low density + > serial devices", so you will have a range of minors on those majors (the + > tty device layer handles this just fine, so you don't have to worry about + > doing anything special.) + > + > So your assignments are: + > + > 204 char Low-density serial ports + > 5 = /dev/ttySA0 SA1100 builtin serial port 0 + > 6 = /dev/ttySA1 SA1100 builtin serial port 1 + > 7 = /dev/ttySA2 SA1100 builtin serial port 2 + > + > 205 char Low-density serial ports (alternate device) + > 5 = /dev/cusa0 Callout device for ttySA0 + > 6 = /dev/cusa1 Callout device for ttySA1 + > 7 = /dev/cusa2 Callout device for ttySA2 + > + +You must create those inodes in /dev on the root filesystem used +by your SA1100-based device:: + + mknod ttySA0 c 204 5 + mknod ttySA1 c 204 6 + mknod ttySA2 c 204 7 + mknod cusa0 c 205 5 + mknod cusa1 c 205 6 + mknod cusa2 c 205 7 + +In addition to the creation of the appropriate device nodes above, you +must ensure your user space applications make use of the correct device +name. The classic example is the content of the /etc/inittab file where +you might have a getty process started on ttyS0. + +In this case: + +- replace occurrences of ttyS0 with ttySA0, ttyS1 with ttySA1, etc. + +- don't forget to add 'ttySA0', 'console', or the appropriate tty name + in /etc/securetty for root to be allowed to login as well. -- cgit v1.2.3