From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- Documentation/core-api/memory-allocation.rst | 176 +++++++++++++++++++++++++++ 1 file changed, 176 insertions(+) create mode 100644 Documentation/core-api/memory-allocation.rst (limited to 'Documentation/core-api/memory-allocation.rst') diff --git a/Documentation/core-api/memory-allocation.rst b/Documentation/core-api/memory-allocation.rst new file mode 100644 index 000000000..5954ddf6e --- /dev/null +++ b/Documentation/core-api/memory-allocation.rst @@ -0,0 +1,176 @@ +.. _memory_allocation: + +======================= +Memory Allocation Guide +======================= + +Linux provides a variety of APIs for memory allocation. You can +allocate small chunks using `kmalloc` or `kmem_cache_alloc` families, +large virtually contiguous areas using `vmalloc` and its derivatives, +or you can directly request pages from the page allocator with +`alloc_pages`. It is also possible to use more specialized allocators, +for instance `cma_alloc` or `zs_malloc`. + +Most of the memory allocation APIs use GFP flags to express how that +memory should be allocated. The GFP acronym stands for "get free +pages", the underlying memory allocation function. + +Diversity of the allocation APIs combined with the numerous GFP flags +makes the question "How should I allocate memory?" not that easy to +answer, although very likely you should use + +:: + + kzalloc(, GFP_KERNEL); + +Of course there are cases when other allocation APIs and different GFP +flags must be used. + +Get Free Page flags +=================== + +The GFP flags control the allocators behavior. They tell what memory +zones can be used, how hard the allocator should try to find free +memory, whether the memory can be accessed by the userspace etc. The +:ref:`Documentation/core-api/mm-api.rst ` provides +reference documentation for the GFP flags and their combinations and +here we briefly outline their recommended usage: + + * Most of the time ``GFP_KERNEL`` is what you need. Memory for the + kernel data structures, DMAable memory, inode cache, all these and + many other allocations types can use ``GFP_KERNEL``. Note, that + using ``GFP_KERNEL`` implies ``GFP_RECLAIM``, which means that + direct reclaim may be triggered under memory pressure; the calling + context must be allowed to sleep. + * If the allocation is performed from an atomic context, e.g interrupt + handler, use ``GFP_NOWAIT``. This flag prevents direct reclaim and + IO or filesystem operations. Consequently, under memory pressure + ``GFP_NOWAIT`` allocation is likely to fail. Allocations which + have a reasonable fallback should be using ``GFP_NOWARN``. + * If you think that accessing memory reserves is justified and the kernel + will be stressed unless allocation succeeds, you may use ``GFP_ATOMIC``. + * Untrusted allocations triggered from userspace should be a subject + of kmem accounting and must have ``__GFP_ACCOUNT`` bit set. There + is the handy ``GFP_KERNEL_ACCOUNT`` shortcut for ``GFP_KERNEL`` + allocations that should be accounted. + * Userspace allocations should use either of the ``GFP_USER``, + ``GFP_HIGHUSER`` or ``GFP_HIGHUSER_MOVABLE`` flags. The longer + the flag name the less restrictive it is. + + ``GFP_HIGHUSER_MOVABLE`` does not require that allocated memory + will be directly accessible by the kernel and implies that the + data is movable. + + ``GFP_HIGHUSER`` means that the allocated memory is not movable, + but it is not required to be directly accessible by the kernel. An + example may be a hardware allocation that maps data directly into + userspace but has no addressing limitations. + + ``GFP_USER`` means that the allocated memory is not movable and it + must be directly accessible by the kernel. + +You may notice that quite a few allocations in the existing code +specify ``GFP_NOIO`` or ``GFP_NOFS``. Historically, they were used to +prevent recursion deadlocks caused by direct memory reclaim calling +back into the FS or IO paths and blocking on already held +resources. Since 4.12 the preferred way to address this issue is to +use new scope APIs described in +:ref:`Documentation/core-api/gfp_mask-from-fs-io.rst `. + +Other legacy GFP flags are ``GFP_DMA`` and ``GFP_DMA32``. They are +used to ensure that the allocated memory is accessible by hardware +with limited addressing capabilities. So unless you are writing a +driver for a device with such restrictions, avoid using these flags. +And even with hardware with restrictions it is preferable to use +`dma_alloc*` APIs. + +GFP flags and reclaim behavior +------------------------------ +Memory allocations may trigger direct or background reclaim and it is +useful to understand how hard the page allocator will try to satisfy that +or another request. + + * ``GFP_KERNEL & ~__GFP_RECLAIM`` - optimistic allocation without _any_ + attempt to free memory at all. The most light weight mode which even + doesn't kick the background reclaim. Should be used carefully because it + might deplete the memory and the next user might hit the more aggressive + reclaim. + + * ``GFP_KERNEL & ~__GFP_DIRECT_RECLAIM`` (or ``GFP_NOWAIT``)- optimistic + allocation without any attempt to free memory from the current + context but can wake kswapd to reclaim memory if the zone is below + the low watermark. Can be used from either atomic contexts or when + the request is a performance optimization and there is another + fallback for a slow path. + + * ``(GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM`` (aka ``GFP_ATOMIC``) - + non sleeping allocation with an expensive fallback so it can access + some portion of memory reserves. Usually used from interrupt/bottom-half + context with an expensive slow path fallback. + + * ``GFP_KERNEL`` - both background and direct reclaim are allowed and the + **default** page allocator behavior is used. That means that not costly + allocation requests are basically no-fail but there is no guarantee of + that behavior so failures have to be checked properly by callers + (e.g. OOM killer victim is allowed to fail currently). + + * ``GFP_KERNEL | __GFP_NORETRY`` - overrides the default allocator behavior + and all allocation requests fail early rather than cause disruptive + reclaim (one round of reclaim in this implementation). The OOM killer + is not invoked. + + * ``GFP_KERNEL | __GFP_RETRY_MAYFAIL`` - overrides the default allocator + behavior and all allocation requests try really hard. The request + will fail if the reclaim cannot make any progress. The OOM killer + won't be triggered. + + * ``GFP_KERNEL | __GFP_NOFAIL`` - overrides the default allocator behavior + and all allocation requests will loop endlessly until they succeed. + This might be really dangerous especially for larger orders. + +Selecting memory allocator +========================== + +The most straightforward way to allocate memory is to use a function +from the kmalloc() family. And, to be on the safe side it's best to use +routines that set memory to zero, like kzalloc(). If you need to +allocate memory for an array, there are kmalloc_array() and kcalloc() +helpers. The helpers struct_size(), array_size() and array3_size() can +be used to safely calculate object sizes without overflowing. + +The maximal size of a chunk that can be allocated with `kmalloc` is +limited. The actual limit depends on the hardware and the kernel +configuration, but it is a good practice to use `kmalloc` for objects +smaller than page size. + +The address of a chunk allocated with `kmalloc` is aligned to at least +ARCH_KMALLOC_MINALIGN bytes. For sizes which are a power of two, the +alignment is also guaranteed to be at least the respective size. + +Chunks allocated with kmalloc() can be resized with krealloc(). Similarly +to kmalloc_array(): a helper for resizing arrays is provided in the form of +krealloc_array(). + +For large allocations you can use vmalloc() and vzalloc(), or directly +request pages from the page allocator. The memory allocated by `vmalloc` +and related functions is not physically contiguous. + +If you are not sure whether the allocation size is too large for +`kmalloc`, it is possible to use kvmalloc() and its derivatives. It will +try to allocate memory with `kmalloc` and if the allocation fails it +will be retried with `vmalloc`. There are restrictions on which GFP +flags can be used with `kvmalloc`; please see kvmalloc_node() reference +documentation. Note that `kvmalloc` may return memory that is not +physically contiguous. + +If you need to allocate many identical objects you can use the slab +cache allocator. The cache should be set up with kmem_cache_create() or +kmem_cache_create_usercopy() before it can be used. The second function +should be used if a part of the cache might be copied to the userspace. +After the cache is created kmem_cache_alloc() and its convenience +wrappers can allocate memory from that cache. + +When the allocated memory is no longer needed it must be freed. You can +use kvfree() for the memory allocated with `kmalloc`, `vmalloc` and +`kvmalloc`. The slab caches should be freed with kmem_cache_free(). And +don't forget to destroy the cache with kmem_cache_destroy(). -- cgit v1.2.3