From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- Documentation/core-api/refcount-vs-atomic.rst | 168 ++++++++++++++++++++++++++ 1 file changed, 168 insertions(+) create mode 100644 Documentation/core-api/refcount-vs-atomic.rst (limited to 'Documentation/core-api/refcount-vs-atomic.rst') diff --git a/Documentation/core-api/refcount-vs-atomic.rst b/Documentation/core-api/refcount-vs-atomic.rst new file mode 100644 index 000000000..79a009ce1 --- /dev/null +++ b/Documentation/core-api/refcount-vs-atomic.rst @@ -0,0 +1,168 @@ +=================================== +refcount_t API compared to atomic_t +=================================== + +.. contents:: :local: + +Introduction +============ + +The goal of refcount_t API is to provide a minimal API for implementing +an object's reference counters. While a generic architecture-independent +implementation from lib/refcount.c uses atomic operations underneath, +there are a number of differences between some of the ``refcount_*()`` and +``atomic_*()`` functions with regards to the memory ordering guarantees. +This document outlines the differences and provides respective examples +in order to help maintainers validate their code against the change in +these memory ordering guarantees. + +The terms used through this document try to follow the formal LKMM defined in +tools/memory-model/Documentation/explanation.txt. + +memory-barriers.txt and atomic_t.txt provide more background to the +memory ordering in general and for atomic operations specifically. + +Relevant types of memory ordering +================================= + +.. note:: The following section only covers some of the memory + ordering types that are relevant for the atomics and reference + counters and used through this document. For a much broader picture + please consult memory-barriers.txt document. + +In the absence of any memory ordering guarantees (i.e. fully unordered) +atomics & refcounters only provide atomicity and +program order (po) relation (on the same CPU). It guarantees that +each ``atomic_*()`` and ``refcount_*()`` operation is atomic and instructions +are executed in program order on a single CPU. +This is implemented using READ_ONCE()/WRITE_ONCE() and +compare-and-swap primitives. + +A strong (full) memory ordering guarantees that all prior loads and +stores (all po-earlier instructions) on the same CPU are completed +before any po-later instruction is executed on the same CPU. +It also guarantees that all po-earlier stores on the same CPU +and all propagated stores from other CPUs must propagate to all +other CPUs before any po-later instruction is executed on the original +CPU (A-cumulative property). This is implemented using smp_mb(). + +A RELEASE memory ordering guarantees that all prior loads and +stores (all po-earlier instructions) on the same CPU are completed +before the operation. It also guarantees that all po-earlier +stores on the same CPU and all propagated stores from other CPUs +must propagate to all other CPUs before the release operation +(A-cumulative property). This is implemented using +smp_store_release(). + +An ACQUIRE memory ordering guarantees that all post loads and +stores (all po-later instructions) on the same CPU are +completed after the acquire operation. It also guarantees that all +po-later stores on the same CPU must propagate to all other CPUs +after the acquire operation executes. This is implemented using +smp_acquire__after_ctrl_dep(). + +A control dependency (on success) for refcounters guarantees that +if a reference for an object was successfully obtained (reference +counter increment or addition happened, function returned true), +then further stores are ordered against this operation. +Control dependency on stores are not implemented using any explicit +barriers, but rely on CPU not to speculate on stores. This is only +a single CPU relation and provides no guarantees for other CPUs. + + +Comparison of functions +======================= + +case 1) - non-"Read/Modify/Write" (RMW) ops +------------------------------------------- + +Function changes: + + * atomic_set() --> refcount_set() + * atomic_read() --> refcount_read() + +Memory ordering guarantee changes: + + * none (both fully unordered) + + +case 2) - increment-based ops that return no value +-------------------------------------------------- + +Function changes: + + * atomic_inc() --> refcount_inc() + * atomic_add() --> refcount_add() + +Memory ordering guarantee changes: + + * none (both fully unordered) + +case 3) - decrement-based RMW ops that return no value +------------------------------------------------------ + +Function changes: + + * atomic_dec() --> refcount_dec() + +Memory ordering guarantee changes: + + * fully unordered --> RELEASE ordering + + +case 4) - increment-based RMW ops that return a value +----------------------------------------------------- + +Function changes: + + * atomic_inc_not_zero() --> refcount_inc_not_zero() + * no atomic counterpart --> refcount_add_not_zero() + +Memory ordering guarantees changes: + + * fully ordered --> control dependency on success for stores + +.. note:: We really assume here that necessary ordering is provided as a + result of obtaining pointer to the object! + + +case 5) - generic dec/sub decrement-based RMW ops that return a value +--------------------------------------------------------------------- + +Function changes: + + * atomic_dec_and_test() --> refcount_dec_and_test() + * atomic_sub_and_test() --> refcount_sub_and_test() + +Memory ordering guarantees changes: + + * fully ordered --> RELEASE ordering + ACQUIRE ordering on success + + +case 6) other decrement-based RMW ops that return a value +--------------------------------------------------------- + +Function changes: + + * no atomic counterpart --> refcount_dec_if_one() + * ``atomic_add_unless(&var, -1, 1)`` --> ``refcount_dec_not_one(&var)`` + +Memory ordering guarantees changes: + + * fully ordered --> RELEASE ordering + control dependency + +.. note:: atomic_add_unless() only provides full order on success. + + +case 7) - lock-based RMW +------------------------ + +Function changes: + + * atomic_dec_and_lock() --> refcount_dec_and_lock() + * atomic_dec_and_mutex_lock() --> refcount_dec_and_mutex_lock() + +Memory ordering guarantees changes: + + * fully ordered --> RELEASE ordering + control dependency + hold + spin_lock() on success -- cgit v1.2.3