From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- Documentation/cpu-freq/cpu-drivers.rst | 286 +++++++++++++++++++++++++++++++++ 1 file changed, 286 insertions(+) create mode 100644 Documentation/cpu-freq/cpu-drivers.rst (limited to 'Documentation/cpu-freq/cpu-drivers.rst') diff --git a/Documentation/cpu-freq/cpu-drivers.rst b/Documentation/cpu-freq/cpu-drivers.rst new file mode 100644 index 000000000..d84ededb6 --- /dev/null +++ b/Documentation/cpu-freq/cpu-drivers.rst @@ -0,0 +1,286 @@ +.. SPDX-License-Identifier: GPL-2.0 + +=============================================== +How to Implement a new CPUFreq Processor Driver +=============================================== + +Authors: + + + - Dominik Brodowski + - Rafael J. Wysocki + - Viresh Kumar + +.. Contents + + 1. What To Do? + 1.1 Initialization + 1.2 Per-CPU Initialization + 1.3 verify + 1.4 target/target_index or setpolicy? + 1.5 target/target_index + 1.6 setpolicy + 1.7 get_intermediate and target_intermediate + 2. Frequency Table Helpers + + + +1. What To Do? +============== + +So, you just got a brand-new CPU / chipset with datasheets and want to +add cpufreq support for this CPU / chipset? Great. Here are some hints +on what is necessary: + + +1.1 Initialization +------------------ + +First of all, in an __initcall level 7 (module_init()) or later +function check whether this kernel runs on the right CPU and the right +chipset. If so, register a struct cpufreq_driver with the CPUfreq core +using cpufreq_register_driver() + +What shall this struct cpufreq_driver contain? + + .name - The name of this driver. + + .init - A pointer to the per-policy initialization function. + + .verify - A pointer to a "verification" function. + + .setpolicy _or_ .fast_switch _or_ .target _or_ .target_index - See + below on the differences. + +And optionally + + .flags - Hints for the cpufreq core. + + .driver_data - cpufreq driver specific data. + + .get_intermediate and target_intermediate - Used to switch to stable + frequency while changing CPU frequency. + + .get - Returns current frequency of the CPU. + + .bios_limit - Returns HW/BIOS max frequency limitations for the CPU. + + .exit - A pointer to a per-policy cleanup function called during + CPU_POST_DEAD phase of cpu hotplug process. + + .suspend - A pointer to a per-policy suspend function which is called + with interrupts disabled and _after_ the governor is stopped for the + policy. + + .resume - A pointer to a per-policy resume function which is called + with interrupts disabled and _before_ the governor is started again. + + .ready - A pointer to a per-policy ready function which is called after + the policy is fully initialized. + + .attr - A pointer to a NULL-terminated list of "struct freq_attr" which + allow to export values to sysfs. + + .boost_enabled - If set, boost frequencies are enabled. + + .set_boost - A pointer to a per-policy function to enable/disable boost + frequencies. + + +1.2 Per-CPU Initialization +-------------------------- + +Whenever a new CPU is registered with the device model, or after the +cpufreq driver registers itself, the per-policy initialization function +cpufreq_driver.init is called if no cpufreq policy existed for the CPU. +Note that the .init() and .exit() routines are called only once for the +policy and not for each CPU managed by the policy. It takes a ``struct +cpufreq_policy *policy`` as argument. What to do now? + +If necessary, activate the CPUfreq support on your CPU. + +Then, the driver must fill in the following values: + ++-----------------------------------+--------------------------------------+ +|policy->cpuinfo.min_freq _and_ | | +|policy->cpuinfo.max_freq | the minimum and maximum frequency | +| | (in kHz) which is supported by | +| | this CPU | ++-----------------------------------+--------------------------------------+ +|policy->cpuinfo.transition_latency | the time it takes on this CPU to | +| | switch between two frequencies in | +| | nanoseconds (if appropriate, else | +| | specify CPUFREQ_ETERNAL) | ++-----------------------------------+--------------------------------------+ +|policy->cur | The current operating frequency of | +| | this CPU (if appropriate) | ++-----------------------------------+--------------------------------------+ +|policy->min, | | +|policy->max, | | +|policy->policy and, if necessary, | | +|policy->governor | must contain the "default policy" for| +| | this CPU. A few moments later, | +| | cpufreq_driver.verify and either | +| | cpufreq_driver.setpolicy or | +| | cpufreq_driver.target/target_index is| +| | called with these values. | ++-----------------------------------+--------------------------------------+ +|policy->cpus | Update this with the masks of the | +| | (online + offline) CPUs that do DVFS | +| | along with this CPU (i.e. that share| +| | clock/voltage rails with it). | ++-----------------------------------+--------------------------------------+ + +For setting some of these values (cpuinfo.min[max]_freq, policy->min[max]), the +frequency table helpers might be helpful. See the section 2 for more information +on them. + + +1.3 verify +---------- + +When the user decides a new policy (consisting of +"policy,governor,min,max") shall be set, this policy must be validated +so that incompatible values can be corrected. For verifying these +values cpufreq_verify_within_limits(``struct cpufreq_policy *policy``, +``unsigned int min_freq``, ``unsigned int max_freq``) function might be helpful. +See section 2 for details on frequency table helpers. + +You need to make sure that at least one valid frequency (or operating +range) is within policy->min and policy->max. If necessary, increase +policy->max first, and only if this is no solution, decrease policy->min. + + +1.4 target or target_index or setpolicy or fast_switch? +------------------------------------------------------- + +Most cpufreq drivers or even most cpu frequency scaling algorithms +only allow the CPU frequency to be set to predefined fixed values. For +these, you use the ->target(), ->target_index() or ->fast_switch() +callbacks. + +Some cpufreq capable processors switch the frequency between certain +limits on their own. These shall use the ->setpolicy() callback. + + +1.5. target/target_index +------------------------ + +The target_index call has two arguments: ``struct cpufreq_policy *policy``, +and ``unsigned int`` index (into the exposed frequency table). + +The CPUfreq driver must set the new frequency when called here. The +actual frequency must be determined by freq_table[index].frequency. + +It should always restore to earlier frequency (i.e. policy->restore_freq) in +case of errors, even if we switched to intermediate frequency earlier. + +Deprecated +---------- +The target call has three arguments: ``struct cpufreq_policy *policy``, +unsigned int target_frequency, unsigned int relation. + +The CPUfreq driver must set the new frequency when called here. The +actual frequency must be determined using the following rules: + +- keep close to "target_freq" +- policy->min <= new_freq <= policy->max (THIS MUST BE VALID!!!) +- if relation==CPUFREQ_REL_L, try to select a new_freq higher than or equal + target_freq. ("L for lowest, but no lower than") +- if relation==CPUFREQ_REL_H, try to select a new_freq lower than or equal + target_freq. ("H for highest, but no higher than") + +Here again the frequency table helper might assist you - see section 2 +for details. + +1.6. fast_switch +---------------- + +This function is used for frequency switching from scheduler's context. +Not all drivers are expected to implement it, as sleeping from within +this callback isn't allowed. This callback must be highly optimized to +do switching as fast as possible. + +This function has two arguments: ``struct cpufreq_policy *policy`` and +``unsigned int target_frequency``. + + +1.7 setpolicy +------------- + +The setpolicy call only takes a ``struct cpufreq_policy *policy`` as +argument. You need to set the lower limit of the in-processor or +in-chipset dynamic frequency switching to policy->min, the upper limit +to policy->max, and -if supported- select a performance-oriented +setting when policy->policy is CPUFREQ_POLICY_PERFORMANCE, and a +powersaving-oriented setting when CPUFREQ_POLICY_POWERSAVE. Also check +the reference implementation in drivers/cpufreq/longrun.c + +1.8 get_intermediate and target_intermediate +-------------------------------------------- + +Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset. + +get_intermediate should return a stable intermediate frequency platform wants to +switch to, and target_intermediate() should set CPU to that frequency, before +jumping to the frequency corresponding to 'index'. Core will take care of +sending notifications and driver doesn't have to handle them in +target_intermediate() or target_index(). + +Drivers can return '0' from get_intermediate() in case they don't wish to switch +to intermediate frequency for some target frequency. In that case core will +directly call ->target_index(). + +NOTE: ->target_index() should restore to policy->restore_freq in case of +failures as core would send notifications for that. + + +2. Frequency Table Helpers +========================== + +As most cpufreq processors only allow for being set to a few specific +frequencies, a "frequency table" with some functions might assist in +some work of the processor driver. Such a "frequency table" consists of +an array of struct cpufreq_frequency_table entries, with driver specific +values in "driver_data", the corresponding frequency in "frequency" and +flags set. At the end of the table, you need to add a +cpufreq_frequency_table entry with frequency set to CPUFREQ_TABLE_END. +And if you want to skip one entry in the table, set the frequency to +CPUFREQ_ENTRY_INVALID. The entries don't need to be in sorted in any +particular order, but if they are cpufreq core will do DVFS a bit +quickly for them as search for best match is faster. + +The cpufreq table is verified automatically by the core if the policy contains a +valid pointer in its policy->freq_table field. + +cpufreq_frequency_table_verify() assures that at least one valid +frequency is within policy->min and policy->max, and all other criteria +are met. This is helpful for the ->verify call. + +cpufreq_frequency_table_target() is the corresponding frequency table +helper for the ->target stage. Just pass the values to this function, +and this function returns the of the frequency table entry which +contains the frequency the CPU shall be set to. + +The following macros can be used as iterators over cpufreq_frequency_table: + +cpufreq_for_each_entry(pos, table) - iterates over all entries of frequency +table. + +cpufreq_for_each_valid_entry(pos, table) - iterates over all entries, +excluding CPUFREQ_ENTRY_INVALID frequencies. +Use arguments "pos" - a ``cpufreq_frequency_table *`` as a loop cursor and +"table" - the ``cpufreq_frequency_table *`` you want to iterate over. + +For example:: + + struct cpufreq_frequency_table *pos, *driver_freq_table; + + cpufreq_for_each_entry(pos, driver_freq_table) { + /* Do something with pos */ + pos->frequency = ... + } + +If you need to work with the position of pos within driver_freq_table, +do not subtract the pointers, as it is quite costly. Instead, use the +macros cpufreq_for_each_entry_idx() and cpufreq_for_each_valid_entry_idx(). -- cgit v1.2.3