From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- Documentation/driver-api/pci/index.rst | 22 +++++ Documentation/driver-api/pci/p2pdma.rst | 141 ++++++++++++++++++++++++++++++++ Documentation/driver-api/pci/pci.rst | 47 +++++++++++ 3 files changed, 210 insertions(+) create mode 100644 Documentation/driver-api/pci/index.rst create mode 100644 Documentation/driver-api/pci/p2pdma.rst create mode 100644 Documentation/driver-api/pci/pci.rst (limited to 'Documentation/driver-api/pci') diff --git a/Documentation/driver-api/pci/index.rst b/Documentation/driver-api/pci/index.rst new file mode 100644 index 000000000..c6cf1fef6 --- /dev/null +++ b/Documentation/driver-api/pci/index.rst @@ -0,0 +1,22 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============================================ +The Linux PCI driver implementer's API guide +============================================ + +.. class:: toc-title + + Table of contents + +.. toctree:: + :maxdepth: 2 + + pci + p2pdma + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/driver-api/pci/p2pdma.rst b/Documentation/driver-api/pci/p2pdma.rst new file mode 100644 index 000000000..44deb52be --- /dev/null +++ b/Documentation/driver-api/pci/p2pdma.rst @@ -0,0 +1,141 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============================ +PCI Peer-to-Peer DMA Support +============================ + +The PCI bus has pretty decent support for performing DMA transfers +between two devices on the bus. This type of transaction is henceforth +called Peer-to-Peer (or P2P). However, there are a number of issues that +make P2P transactions tricky to do in a perfectly safe way. + +One of the biggest issues is that PCI doesn't require forwarding +transactions between hierarchy domains, and in PCIe, each Root Port +defines a separate hierarchy domain. To make things worse, there is no +simple way to determine if a given Root Complex supports this or not. +(See PCIe r4.0, sec 1.3.1). Therefore, as of this writing, the kernel +only supports doing P2P when the endpoints involved are all behind the +same PCI bridge, as such devices are all in the same PCI hierarchy +domain, and the spec guarantees that all transactions within the +hierarchy will be routable, but it does not require routing +between hierarchies. + +The second issue is that to make use of existing interfaces in Linux, +memory that is used for P2P transactions needs to be backed by struct +pages. However, PCI BARs are not typically cache coherent so there are +a few corner case gotchas with these pages so developers need to +be careful about what they do with them. + + +Driver Writer's Guide +===================== + +In a given P2P implementation there may be three or more different +types of kernel drivers in play: + +* Provider - A driver which provides or publishes P2P resources like + memory or doorbell registers to other drivers. +* Client - A driver which makes use of a resource by setting up a + DMA transaction to or from it. +* Orchestrator - A driver which orchestrates the flow of data between + clients and providers. + +In many cases there could be overlap between these three types (i.e., +it may be typical for a driver to be both a provider and a client). + +For example, in the NVMe Target Copy Offload implementation: + +* The NVMe PCI driver is both a client, provider and orchestrator + in that it exposes any CMB (Controller Memory Buffer) as a P2P memory + resource (provider), it accepts P2P memory pages as buffers in requests + to be used directly (client) and it can also make use of the CMB as + submission queue entries (orchestrator). +* The RDMA driver is a client in this arrangement so that an RNIC + can DMA directly to the memory exposed by the NVMe device. +* The NVMe Target driver (nvmet) can orchestrate the data from the RNIC + to the P2P memory (CMB) and then to the NVMe device (and vice versa). + +This is currently the only arrangement supported by the kernel but +one could imagine slight tweaks to this that would allow for the same +functionality. For example, if a specific RNIC added a BAR with some +memory behind it, its driver could add support as a P2P provider and +then the NVMe Target could use the RNIC's memory instead of the CMB +in cases where the NVMe cards in use do not have CMB support. + + +Provider Drivers +---------------- + +A provider simply needs to register a BAR (or a portion of a BAR) +as a P2P DMA resource using :c:func:`pci_p2pdma_add_resource()`. +This will register struct pages for all the specified memory. + +After that it may optionally publish all of its resources as +P2P memory using :c:func:`pci_p2pmem_publish()`. This will allow +any orchestrator drivers to find and use the memory. When marked in +this way, the resource must be regular memory with no side effects. + +For the time being this is fairly rudimentary in that all resources +are typically going to be P2P memory. Future work will likely expand +this to include other types of resources like doorbells. + + +Client Drivers +-------------- + +A client driver typically only has to conditionally change its DMA map +routine to use the mapping function :c:func:`pci_p2pdma_map_sg()` instead +of the usual :c:func:`dma_map_sg()` function. Memory mapped in this +way does not need to be unmapped. + +The client may also, optionally, make use of +:c:func:`is_pci_p2pdma_page()` to determine when to use the P2P mapping +functions and when to use the regular mapping functions. In some +situations, it may be more appropriate to use a flag to indicate a +given request is P2P memory and map appropriately. It is important to +ensure that struct pages that back P2P memory stay out of code that +does not have support for them as other code may treat the pages as +regular memory which may not be appropriate. + + +Orchestrator Drivers +-------------------- + +The first task an orchestrator driver must do is compile a list of +all client devices that will be involved in a given transaction. For +example, the NVMe Target driver creates a list including the namespace +block device and the RNIC in use. If the orchestrator has access to +a specific P2P provider to use it may check compatibility using +:c:func:`pci_p2pdma_distance()` otherwise it may find a memory provider +that's compatible with all clients using :c:func:`pci_p2pmem_find()`. +If more than one provider is supported, the one nearest to all the clients will +be chosen first. If more than one provider is an equal distance away, the +one returned will be chosen at random (it is not an arbitrary but +truly random). This function returns the PCI device to use for the provider +with a reference taken and therefore when it's no longer needed it should be +returned with pci_dev_put(). + +Once a provider is selected, the orchestrator can then use +:c:func:`pci_alloc_p2pmem()` and :c:func:`pci_free_p2pmem()` to +allocate P2P memory from the provider. :c:func:`pci_p2pmem_alloc_sgl()` +and :c:func:`pci_p2pmem_free_sgl()` are convenience functions for +allocating scatter-gather lists with P2P memory. + +Struct Page Caveats +------------------- + +Driver writers should be very careful about not passing these special +struct pages to code that isn't prepared for it. At this time, the kernel +interfaces do not have any checks for ensuring this. This obviously +precludes passing these pages to userspace. + +P2P memory is also technically IO memory but should never have any side +effects behind it. Thus, the order of loads and stores should not be important +and ioreadX(), iowriteX() and friends should not be necessary. + + +P2P DMA Support Library +======================= + +.. kernel-doc:: drivers/pci/p2pdma.c + :export: diff --git a/Documentation/driver-api/pci/pci.rst b/Documentation/driver-api/pci/pci.rst new file mode 100644 index 000000000..4843cfad4 --- /dev/null +++ b/Documentation/driver-api/pci/pci.rst @@ -0,0 +1,47 @@ +PCI Support Library +------------------- + +.. kernel-doc:: drivers/pci/pci.c + :export: + +.. kernel-doc:: drivers/pci/pci-driver.c + :export: + +.. kernel-doc:: drivers/pci/remove.c + :export: + +.. kernel-doc:: drivers/pci/search.c + :export: + +.. kernel-doc:: drivers/pci/msi/msi.c + :export: + +.. kernel-doc:: drivers/pci/bus.c + :export: + +.. kernel-doc:: drivers/pci/access.c + :export: + +.. kernel-doc:: drivers/pci/irq.c + :export: + +.. kernel-doc:: drivers/pci/probe.c + :export: + +.. kernel-doc:: drivers/pci/slot.c + :export: + +.. kernel-doc:: drivers/pci/rom.c + :export: + +.. kernel-doc:: drivers/pci/iov.c + :export: + +.. kernel-doc:: drivers/pci/pci-sysfs.c + :internal: + +PCI Hotplug Support Library +--------------------------- + +.. kernel-doc:: drivers/pci/hotplug/pci_hotplug_core.c + :export: -- cgit v1.2.3