From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- .../ethernet/freescale/dpaa2/overview.rst | 406 +++++++++++++++++++++ 1 file changed, 406 insertions(+) create mode 100644 Documentation/networking/device_drivers/ethernet/freescale/dpaa2/overview.rst (limited to 'Documentation/networking/device_drivers/ethernet/freescale/dpaa2/overview.rst') diff --git a/Documentation/networking/device_drivers/ethernet/freescale/dpaa2/overview.rst b/Documentation/networking/device_drivers/ethernet/freescale/dpaa2/overview.rst new file mode 100644 index 000000000..199647729 --- /dev/null +++ b/Documentation/networking/device_drivers/ethernet/freescale/dpaa2/overview.rst @@ -0,0 +1,406 @@ +.. include:: + +========================================================= +DPAA2 (Data Path Acceleration Architecture Gen2) Overview +========================================================= + +:Copyright: |copy| 2015 Freescale Semiconductor Inc. +:Copyright: |copy| 2018 NXP + +This document provides an overview of the Freescale DPAA2 architecture +and how it is integrated into the Linux kernel. + +Introduction +============ + +DPAA2 is a hardware architecture designed for high-speeed network +packet processing. DPAA2 consists of sophisticated mechanisms for +processing Ethernet packets, queue management, buffer management, +autonomous L2 switching, virtual Ethernet bridging, and accelerator +(e.g. crypto) sharing. + +A DPAA2 hardware component called the Management Complex (or MC) manages the +DPAA2 hardware resources. The MC provides an object-based abstraction for +software drivers to use the DPAA2 hardware. +The MC uses DPAA2 hardware resources such as queues, buffer pools, and +network ports to create functional objects/devices such as network +interfaces, an L2 switch, or accelerator instances. +The MC provides memory-mapped I/O command interfaces (MC portals) +which DPAA2 software drivers use to operate on DPAA2 objects. + +The diagram below shows an overview of the DPAA2 resource management +architecture:: + + +--------------------------------------+ + | OS | + | DPAA2 drivers | + | | | + +-----------------------------|--------+ + | + | (create,discover,connect + | config,use,destroy) + | + DPAA2 | + +------------------------| mc portal |-+ + | | | + | +- - - - - - - - - - - - -V- - -+ | + | | | | + | | Management Complex (MC) | | + | | | | + | +- - - - - - - - - - - - - - - -+ | + | | + | Hardware Hardware | + | Resources Objects | + | --------- ------- | + | -queues -DPRC | + | -buffer pools -DPMCP | + | -Eth MACs/ports -DPIO | + | -network interface -DPNI | + | profiles -DPMAC | + | -queue portals -DPBP | + | -MC portals ... | + | ... | + | | + +--------------------------------------+ + + +The MC mediates operations such as create, discover, +connect, configuration, and destroy. Fast-path operations +on data, such as packet transmit/receive, are not mediated by +the MC and are done directly using memory mapped regions in +DPIO objects. + +Overview of DPAA2 Objects +========================= + +The section provides a brief overview of some key DPAA2 objects. +A simple scenario is described illustrating the objects involved +in creating a network interfaces. + +DPRC (Datapath Resource Container) +---------------------------------- + +A DPRC is a container object that holds all the other +types of DPAA2 objects. In the example diagram below there +are 8 objects of 5 types (DPMCP, DPIO, DPBP, DPNI, and DPMAC) +in the container. + +:: + + +---------------------------------------------------------+ + | DPRC | + | | + | +-------+ +-------+ +-------+ +-------+ +-------+ | + | | DPMCP | | DPIO | | DPBP | | DPNI | | DPMAC | | + | +-------+ +-------+ +-------+ +---+---+ +---+---+ | + | | DPMCP | | DPIO | | + | +-------+ +-------+ | + | | DPMCP | | + | +-------+ | + | | + +---------------------------------------------------------+ + +From the point of view of an OS, a DPRC behaves similar to a plug and +play bus, like PCI. DPRC commands can be used to enumerate the contents +of the DPRC, discover the hardware objects present (including mappable +regions and interrupts). + +:: + + DPRC.1 (bus) + | + +--+--------+-------+-------+-------+ + | | | | | + DPMCP.1 DPIO.1 DPBP.1 DPNI.1 DPMAC.1 + DPMCP.2 DPIO.2 + DPMCP.3 + +Hardware objects can be created and destroyed dynamically, providing +the ability to hot plug/unplug objects in and out of the DPRC. + +A DPRC has a mappable MMIO region (an MC portal) that can be used +to send MC commands. It has an interrupt for status events (like +hotplug). +All objects in a container share the same hardware "isolation context". +This means that with respect to an IOMMU the isolation granularity +is at the DPRC (container) level, not at the individual object +level. + +DPRCs can be defined statically and populated with objects +via a config file passed to the MC when firmware starts it. + +DPAA2 Objects for an Ethernet Network Interface +----------------------------------------------- + +A typical Ethernet NIC is monolithic-- the NIC device contains TX/RX +queuing mechanisms, configuration mechanisms, buffer management, +physical ports, and interrupts. DPAA2 uses a more granular approach +utilizing multiple hardware objects. Each object provides specialized +functions. Groups of these objects are used by software to provide +Ethernet network interface functionality. This approach provides +efficient use of finite hardware resources, flexibility, and +performance advantages. + +The diagram below shows the objects needed for a simple +network interface configuration on a system with 2 CPUs. + +:: + + +---+---+ +---+---+ + CPU0 CPU1 + +---+---+ +---+---+ + | | + +---+---+ +---+---+ + DPIO DPIO + +---+---+ +---+---+ + \ / + \ / + \ / + +---+---+ + DPNI --- DPBP,DPMCP + +---+---+ + | + | + +---+---+ + DPMAC + +---+---+ + | + port/PHY + +Below the objects are described. For each object a brief description +is provided along with a summary of the kinds of operations the object +supports and a summary of key resources of the object (MMIO regions +and IRQs). + +DPMAC (Datapath Ethernet MAC) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Represents an Ethernet MAC, a hardware device that connects to an Ethernet +PHY and allows physical transmission and reception of Ethernet frames. + +- MMIO regions: none +- IRQs: DPNI link change +- commands: set link up/down, link config, get stats, + IRQ config, enable, reset + +DPNI (Datapath Network Interface) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Contains TX/RX queues, network interface configuration, and RX buffer pool +configuration mechanisms. The TX/RX queues are in memory and are identified +by queue number. + +- MMIO regions: none +- IRQs: link state +- commands: port config, offload config, queue config, + parse/classify config, IRQ config, enable, reset + +DPIO (Datapath I/O) +~~~~~~~~~~~~~~~~~~~ +Provides interfaces to enqueue and dequeue +packets and do hardware buffer pool management operations. The DPAA2 +architecture separates the mechanism to access queues (the DPIO object) +from the queues themselves. The DPIO provides an MMIO interface to +enqueue/dequeue packets. To enqueue something a descriptor is written +to the DPIO MMIO region, which includes the target queue number. +There will typically be one DPIO assigned to each CPU. This allows all +CPUs to simultaneously perform enqueue/dequeued operations. DPIOs are +expected to be shared by different DPAA2 drivers. + +- MMIO regions: queue operations, buffer management +- IRQs: data availability, congestion notification, buffer + pool depletion +- commands: IRQ config, enable, reset + +DPBP (Datapath Buffer Pool) +~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Represents a hardware buffer pool. + +- MMIO regions: none +- IRQs: none +- commands: enable, reset + +DPMCP (Datapath MC Portal) +~~~~~~~~~~~~~~~~~~~~~~~~~~ +Provides an MC command portal. +Used by drivers to send commands to the MC to manage +objects. + +- MMIO regions: MC command portal +- IRQs: command completion +- commands: IRQ config, enable, reset + +Object Connections +================== +Some objects have explicit relationships that must +be configured: + +- DPNI <--> DPMAC +- DPNI <--> DPNI +- DPNI <--> L2-switch-port + + A DPNI must be connected to something such as a DPMAC, + another DPNI, or L2 switch port. The DPNI connection + is made via a DPRC command. + +:: + + +-------+ +-------+ + | DPNI | | DPMAC | + +---+---+ +---+---+ + | | + +==========+ + +- DPNI <--> DPBP + + A network interface requires a 'buffer pool' (DPBP + object) which provides a list of pointers to memory + where received Ethernet data is to be copied. The + Ethernet driver configures the DPBPs associated with + the network interface. + +Interrupts +========== +All interrupts generated by DPAA2 objects are message +interrupts. At the hardware level message interrupts +generated by devices will normally have 3 components-- +1) a non-spoofable 'device-id' expressed on the hardware +bus, 2) an address, 3) a data value. + +In the case of DPAA2 devices/objects, all objects in the +same container/DPRC share the same 'device-id'. +For ARM-based SoC this is the same as the stream ID. + + +DPAA2 Linux Drivers Overview +============================ + +This section provides an overview of the Linux kernel drivers for +DPAA2-- 1) the bus driver and associated "DPAA2 infrastructure" +drivers and 2) functional object drivers (such as Ethernet). + +As described previously, a DPRC is a container that holds the other +types of DPAA2 objects. It is functionally similar to a plug-and-play +bus controller. +Each object in the DPRC is a Linux "device" and is bound to a driver. +The diagram below shows the Linux drivers involved in a networking +scenario and the objects bound to each driver. A brief description +of each driver follows. + +:: + + +------------+ + | OS Network | + | Stack | + +------------+ +------------+ + | Allocator |. . . . . . . | Ethernet | + |(DPMCP,DPBP)| | (DPNI) | + +-.----------+ +---+---+----+ + . . ^ | + . . | | dequeue> + +-------------+ . | | + | DPRC driver | . +---+---V----+ +---------+ + | (DPRC) | . . . . . .| DPIO driver| | MAC | + +----------+--+ | (DPIO) | | (DPMAC) | + | +------+-----+ +-----+---+ + | | | + | | | + +--------+----------+ | +--+---+ + | MC-bus driver | | | PHY | + | | | |driver| + | /bus/fsl-mc | | +--+---+ + +-------------------+ | | + | | + ========================= HARDWARE =========|=================|====== + DPIO | + | | + DPNI---DPBP | + | | + DPMAC | + | | + PHY ---------------+ + ============================================|======================== + +A brief description of each driver is provided below. + +MC-bus driver +------------- +The MC-bus driver is a platform driver and is probed from a +node in the device tree (compatible "fsl,qoriq-mc") passed in by boot +firmware. It is responsible for bootstrapping the DPAA2 kernel +infrastructure. +Key functions include: + +- registering a new bus type named "fsl-mc" with the kernel, + and implementing bus call-backs (e.g. match/uevent/dev_groups) +- implementing APIs for DPAA2 driver registration and for device + add/remove +- creates an MSI IRQ domain +- doing a 'device add' to expose the 'root' DPRC, in turn triggering + a bind of the root DPRC to the DPRC driver + +The binding for the MC-bus device-tree node can be consulted at +*Documentation/devicetree/bindings/misc/fsl,qoriq-mc.txt*. +The sysfs bind/unbind interfaces for the MC-bus can be consulted at +*Documentation/ABI/testing/sysfs-bus-fsl-mc*. + +DPRC driver +----------- +The DPRC driver is bound to DPRC objects and does runtime management +of a bus instance. It performs the initial bus scan of the DPRC +and handles interrupts for container events such as hot plug by +re-scanning the DPRC. + +Allocator +--------- +Certain objects such as DPMCP and DPBP are generic and fungible, +and are intended to be used by other drivers. For example, +the DPAA2 Ethernet driver needs: + +- DPMCPs to send MC commands, to configure network interfaces +- DPBPs for network buffer pools + +The allocator driver registers for these allocatable object types +and those objects are bound to the allocator when the bus is probed. +The allocator maintains a pool of objects that are available for +allocation by other DPAA2 drivers. + +DPIO driver +----------- +The DPIO driver is bound to DPIO objects and provides services that allow +other drivers such as the Ethernet driver to enqueue and dequeue data for +their respective objects. +Key services include: + +- data availability notifications +- hardware queuing operations (enqueue and dequeue of data) +- hardware buffer pool management + +To transmit a packet the Ethernet driver puts data on a queue and +invokes a DPIO API. For receive, the Ethernet driver registers +a data availability notification callback. To dequeue a packet +a DPIO API is used. +There is typically one DPIO object per physical CPU for optimum +performance, allowing different CPUs to simultaneously enqueue +and dequeue data. + +The DPIO driver operates on behalf of all DPAA2 drivers +active in the kernel-- Ethernet, crypto, compression, +etc. + +Ethernet driver +--------------- +The Ethernet driver is bound to a DPNI and implements the kernel +interfaces needed to connect the DPAA2 network interface to +the network stack. +Each DPNI corresponds to a Linux network interface. + +MAC driver +---------- +An Ethernet PHY is an off-chip, board specific component and is managed +by the appropriate PHY driver via an mdio bus. The MAC driver +plays a role of being a proxy between the PHY driver and the +MC. It does this proxy via the MC commands to a DPMAC object. +If the PHY driver signals a link change, the MAC driver notifies +the MC via a DPMAC command. If a network interface is brought +up or down, the MC notifies the DPMAC driver via an interrupt and +the driver can take appropriate action. -- cgit v1.2.3