From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- arch/alpha/lib/stxncpy.S | 346 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 346 insertions(+) create mode 100644 arch/alpha/lib/stxncpy.S (limited to 'arch/alpha/lib/stxncpy.S') diff --git a/arch/alpha/lib/stxncpy.S b/arch/alpha/lib/stxncpy.S new file mode 100644 index 000000000..011d9091c --- /dev/null +++ b/arch/alpha/lib/stxncpy.S @@ -0,0 +1,346 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * arch/alpha/lib/stxncpy.S + * Contributed by Richard Henderson (rth@tamu.edu) + * + * Copy no more than COUNT bytes of the null-terminated string from + * SRC to DST. + * + * This is an internal routine used by strncpy, stpncpy, and strncat. + * As such, it uses special linkage conventions to make implementation + * of these public functions more efficient. + * + * On input: + * t9 = return address + * a0 = DST + * a1 = SRC + * a2 = COUNT + * + * Furthermore, COUNT may not be zero. + * + * On output: + * t0 = last word written + * t10 = bitmask (with one bit set) indicating the byte position of + * the end of the range specified by COUNT + * t12 = bitmask (with one bit set) indicating the last byte written + * a0 = unaligned address of the last *word* written + * a2 = the number of full words left in COUNT + * + * Furthermore, v0, a3-a5, t11, and $at are untouched. + */ + +#include + + .set noat + .set noreorder + + .text + +/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that + doesn't like putting the entry point for a procedure somewhere in the + middle of the procedure descriptor. Work around this by putting the + aligned copy in its own procedure descriptor */ + + .ent stxncpy_aligned + .align 3 +stxncpy_aligned: + .frame sp, 0, t9, 0 + .prologue 0 + + /* On entry to this basic block: + t0 == the first destination word for masking back in + t1 == the first source word. */ + + /* Create the 1st output word and detect 0's in the 1st input word. */ + lda t2, -1 # e1 : build a mask against false zero + mskqh t2, a1, t2 # e0 : detection in the src word + mskqh t1, a1, t3 # e0 : + ornot t1, t2, t2 # .. e1 : + mskql t0, a1, t0 # e0 : assemble the first output word + cmpbge zero, t2, t8 # .. e1 : bits set iff null found + or t0, t3, t0 # e0 : + beq a2, $a_eoc # .. e1 : + bne t8, $a_eos # .. e1 : + + /* On entry to this basic block: + t0 == a source word not containing a null. */ + +$a_loop: + stq_u t0, 0(a0) # e0 : + addq a0, 8, a0 # .. e1 : + ldq_u t0, 0(a1) # e0 : + addq a1, 8, a1 # .. e1 : + subq a2, 1, a2 # e0 : + cmpbge zero, t0, t8 # .. e1 (stall) + beq a2, $a_eoc # e1 : + beq t8, $a_loop # e1 : + + /* Take care of the final (partial) word store. At this point + the end-of-count bit is set in t8 iff it applies. + + On entry to this basic block we have: + t0 == the source word containing the null + t8 == the cmpbge mask that found it. */ + +$a_eos: + negq t8, t12 # e0 : find low bit set + and t8, t12, t12 # e1 (stall) + + /* For the sake of the cache, don't read a destination word + if we're not going to need it. */ + and t12, 0x80, t6 # e0 : + bne t6, 1f # .. e1 (zdb) + + /* We're doing a partial word store and so need to combine + our source and original destination words. */ + ldq_u t1, 0(a0) # e0 : + subq t12, 1, t6 # .. e1 : + or t12, t6, t8 # e0 : + unop # + zapnot t0, t8, t0 # e0 : clear src bytes > null + zap t1, t8, t1 # .. e1 : clear dst bytes <= null + or t0, t1, t0 # e1 : + +1: stq_u t0, 0(a0) # e0 : + ret (t9) # e1 : + + /* Add the end-of-count bit to the eos detection bitmask. */ +$a_eoc: + or t10, t8, t8 + br $a_eos + + .end stxncpy_aligned + + .align 3 + .ent __stxncpy + .globl __stxncpy +__stxncpy: + .frame sp, 0, t9, 0 + .prologue 0 + + /* Are source and destination co-aligned? */ + xor a0, a1, t1 # e0 : + and a0, 7, t0 # .. e1 : find dest misalignment + and t1, 7, t1 # e0 : + addq a2, t0, a2 # .. e1 : bias count by dest misalignment + subq a2, 1, a2 # e0 : + and a2, 7, t2 # e1 : + srl a2, 3, a2 # e0 : a2 = loop counter = (count - 1)/8 + addq zero, 1, t10 # .. e1 : + sll t10, t2, t10 # e0 : t10 = bitmask of last count byte + bne t1, $unaligned # .. e1 : + + /* We are co-aligned; take care of a partial first word. */ + + ldq_u t1, 0(a1) # e0 : load first src word + addq a1, 8, a1 # .. e1 : + + beq t0, stxncpy_aligned # avoid loading dest word if not needed + ldq_u t0, 0(a0) # e0 : + br stxncpy_aligned # .. e1 : + + +/* The source and destination are not co-aligned. Align the destination + and cope. We have to be very careful about not reading too much and + causing a SEGV. */ + + .align 3 +$u_head: + /* We know just enough now to be able to assemble the first + full source word. We can still find a zero at the end of it + that prevents us from outputting the whole thing. + + On entry to this basic block: + t0 == the first dest word, unmasked + t1 == the shifted low bits of the first source word + t6 == bytemask that is -1 in dest word bytes */ + + ldq_u t2, 8(a1) # e0 : load second src word + addq a1, 8, a1 # .. e1 : + mskql t0, a0, t0 # e0 : mask trailing garbage in dst + extqh t2, a1, t4 # e0 : + or t1, t4, t1 # e1 : first aligned src word complete + mskqh t1, a0, t1 # e0 : mask leading garbage in src + or t0, t1, t0 # e0 : first output word complete + or t0, t6, t6 # e1 : mask original data for zero test + cmpbge zero, t6, t8 # e0 : + beq a2, $u_eocfin # .. e1 : + lda t6, -1 # e0 : + bne t8, $u_final # .. e1 : + + mskql t6, a1, t6 # e0 : mask out bits already seen + nop # .. e1 : + stq_u t0, 0(a0) # e0 : store first output word + or t6, t2, t2 # .. e1 : + cmpbge zero, t2, t8 # e0 : find nulls in second partial + addq a0, 8, a0 # .. e1 : + subq a2, 1, a2 # e0 : + bne t8, $u_late_head_exit # .. e1 : + + /* Finally, we've got all the stupid leading edge cases taken care + of and we can set up to enter the main loop. */ + + extql t2, a1, t1 # e0 : position hi-bits of lo word + beq a2, $u_eoc # .. e1 : + ldq_u t2, 8(a1) # e0 : read next high-order source word + addq a1, 8, a1 # .. e1 : + extqh t2, a1, t0 # e0 : position lo-bits of hi word (stall) + cmpbge zero, t2, t8 # .. e1 : + nop # e0 : + bne t8, $u_eos # .. e1 : + + /* Unaligned copy main loop. In order to avoid reading too much, + the loop is structured to detect zeros in aligned source words. + This has, unfortunately, effectively pulled half of a loop + iteration out into the head and half into the tail, but it does + prevent nastiness from accumulating in the very thing we want + to run as fast as possible. + + On entry to this basic block: + t0 == the shifted low-order bits from the current source word + t1 == the shifted high-order bits from the previous source word + t2 == the unshifted current source word + + We further know that t2 does not contain a null terminator. */ + + .align 3 +$u_loop: + or t0, t1, t0 # e0 : current dst word now complete + subq a2, 1, a2 # .. e1 : decrement word count + stq_u t0, 0(a0) # e0 : save the current word + addq a0, 8, a0 # .. e1 : + extql t2, a1, t1 # e0 : extract high bits for next time + beq a2, $u_eoc # .. e1 : + ldq_u t2, 8(a1) # e0 : load high word for next time + addq a1, 8, a1 # .. e1 : + nop # e0 : + cmpbge zero, t2, t8 # e1 : test new word for eos (stall) + extqh t2, a1, t0 # e0 : extract low bits for current word + beq t8, $u_loop # .. e1 : + + /* We've found a zero somewhere in the source word we just read. + If it resides in the lower half, we have one (probably partial) + word to write out, and if it resides in the upper half, we + have one full and one partial word left to write out. + + On entry to this basic block: + t0 == the shifted low-order bits from the current source word + t1 == the shifted high-order bits from the previous source word + t2 == the unshifted current source word. */ +$u_eos: + or t0, t1, t0 # e0 : first (partial) source word complete + nop # .. e1 : + cmpbge zero, t0, t8 # e0 : is the null in this first bit? + bne t8, $u_final # .. e1 (zdb) + + stq_u t0, 0(a0) # e0 : the null was in the high-order bits + addq a0, 8, a0 # .. e1 : + subq a2, 1, a2 # e1 : + +$u_late_head_exit: + extql t2, a1, t0 # .. e0 : + cmpbge zero, t0, t8 # e0 : + or t8, t10, t6 # e1 : + cmoveq a2, t6, t8 # e0 : + nop # .. e1 : + + /* Take care of a final (probably partial) result word. + On entry to this basic block: + t0 == assembled source word + t8 == cmpbge mask that found the null. */ +$u_final: + negq t8, t6 # e0 : isolate low bit set + and t6, t8, t12 # e1 : + + and t12, 0x80, t6 # e0 : avoid dest word load if we can + bne t6, 1f # .. e1 (zdb) + + ldq_u t1, 0(a0) # e0 : + subq t12, 1, t6 # .. e1 : + or t6, t12, t8 # e0 : + zapnot t0, t8, t0 # .. e1 : kill source bytes > null + zap t1, t8, t1 # e0 : kill dest bytes <= null + or t0, t1, t0 # e1 : + +1: stq_u t0, 0(a0) # e0 : + ret (t9) # .. e1 : + + /* Got to end-of-count before end of string. + On entry to this basic block: + t1 == the shifted high-order bits from the previous source word */ +$u_eoc: + and a1, 7, t6 # e1 : + sll t10, t6, t6 # e0 : + and t6, 0xff, t6 # e0 : + bne t6, 1f # .. e1 : + + ldq_u t2, 8(a1) # e0 : load final src word + nop # .. e1 : + extqh t2, a1, t0 # e0 : extract low bits for last word + or t1, t0, t1 # e1 : + +1: cmpbge zero, t1, t8 + mov t1, t0 + +$u_eocfin: # end-of-count, final word + or t10, t8, t8 + br $u_final + + /* Unaligned copy entry point. */ + .align 3 +$unaligned: + + ldq_u t1, 0(a1) # e0 : load first source word + + and a0, 7, t4 # .. e1 : find dest misalignment + and a1, 7, t5 # e0 : find src misalignment + + /* Conditionally load the first destination word and a bytemask + with 0xff indicating that the destination byte is sacrosanct. */ + + mov zero, t0 # .. e1 : + mov zero, t6 # e0 : + beq t4, 1f # .. e1 : + ldq_u t0, 0(a0) # e0 : + lda t6, -1 # .. e1 : + mskql t6, a0, t6 # e0 : + subq a1, t4, a1 # .. e1 : sub dest misalignment from src addr + + /* If source misalignment is larger than dest misalignment, we need + extra startup checks to avoid SEGV. */ + +1: cmplt t4, t5, t12 # e1 : + extql t1, a1, t1 # .. e0 : shift src into place + lda t2, -1 # e0 : for creating masks later + beq t12, $u_head # .. e1 : + + extql t2, a1, t2 # e0 : + cmpbge zero, t1, t8 # .. e1 : is there a zero? + andnot t2, t6, t2 # e0 : dest mask for a single word copy + or t8, t10, t5 # .. e1 : test for end-of-count too + cmpbge zero, t2, t3 # e0 : + cmoveq a2, t5, t8 # .. e1 : + andnot t8, t3, t8 # e0 : + beq t8, $u_head # .. e1 (zdb) + + /* At this point we've found a zero in the first partial word of + the source. We need to isolate the valid source data and mask + it into the original destination data. (Incidentally, we know + that we'll need at least one byte of that original dest word.) */ + + ldq_u t0, 0(a0) # e0 : + negq t8, t6 # .. e1 : build bitmask of bytes <= zero + mskqh t1, t4, t1 # e0 : + and t6, t8, t12 # .. e1 : + subq t12, 1, t6 # e0 : + or t6, t12, t8 # e1 : + + zapnot t2, t8, t2 # e0 : prepare source word; mirror changes + zapnot t1, t8, t1 # .. e1 : to source validity mask + + andnot t0, t2, t0 # e0 : zero place for source to reside + or t0, t1, t0 # e1 : and put it there + stq_u t0, 0(a0) # e0 : + ret (t9) # .. e1 : + + .end __stxncpy -- cgit v1.2.3