From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- arch/arm64/kvm/vmid.c | 196 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 196 insertions(+) create mode 100644 arch/arm64/kvm/vmid.c (limited to 'arch/arm64/kvm/vmid.c') diff --git a/arch/arm64/kvm/vmid.c b/arch/arm64/kvm/vmid.c new file mode 100644 index 000000000..d78ae63d7 --- /dev/null +++ b/arch/arm64/kvm/vmid.c @@ -0,0 +1,196 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * VMID allocator. + * + * Based on Arm64 ASID allocator algorithm. + * Please refer arch/arm64/mm/context.c for detailed + * comments on algorithm. + * + * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. + * Copyright (C) 2012 ARM Ltd. + */ + +#include +#include + +#include +#include + +unsigned int kvm_arm_vmid_bits; +static DEFINE_RAW_SPINLOCK(cpu_vmid_lock); + +static atomic64_t vmid_generation; +static unsigned long *vmid_map; + +static DEFINE_PER_CPU(atomic64_t, active_vmids); +static DEFINE_PER_CPU(u64, reserved_vmids); + +#define VMID_MASK (~GENMASK(kvm_arm_vmid_bits - 1, 0)) +#define VMID_FIRST_VERSION (1UL << kvm_arm_vmid_bits) + +#define NUM_USER_VMIDS VMID_FIRST_VERSION +#define vmid2idx(vmid) ((vmid) & ~VMID_MASK) +#define idx2vmid(idx) vmid2idx(idx) + +/* + * As vmid #0 is always reserved, we will never allocate one + * as below and can be treated as invalid. This is used to + * set the active_vmids on vCPU schedule out. + */ +#define VMID_ACTIVE_INVALID VMID_FIRST_VERSION + +#define vmid_gen_match(vmid) \ + (!(((vmid) ^ atomic64_read(&vmid_generation)) >> kvm_arm_vmid_bits)) + +static void flush_context(void) +{ + int cpu; + u64 vmid; + + bitmap_clear(vmid_map, 0, NUM_USER_VMIDS); + + for_each_possible_cpu(cpu) { + vmid = atomic64_xchg_relaxed(&per_cpu(active_vmids, cpu), 0); + + /* Preserve reserved VMID */ + if (vmid == 0) + vmid = per_cpu(reserved_vmids, cpu); + __set_bit(vmid2idx(vmid), vmid_map); + per_cpu(reserved_vmids, cpu) = vmid; + } + + /* + * Unlike ASID allocator, we expect less frequent rollover in + * case of VMIDs. Hence, instead of marking the CPU as + * flush_pending and issuing a local context invalidation on + * the next context-switch, we broadcast TLB flush + I-cache + * invalidation over the inner shareable domain on rollover. + */ + kvm_call_hyp(__kvm_flush_vm_context); +} + +static bool check_update_reserved_vmid(u64 vmid, u64 newvmid) +{ + int cpu; + bool hit = false; + + /* + * Iterate over the set of reserved VMIDs looking for a match + * and update to use newvmid (i.e. the same VMID in the current + * generation). + */ + for_each_possible_cpu(cpu) { + if (per_cpu(reserved_vmids, cpu) == vmid) { + hit = true; + per_cpu(reserved_vmids, cpu) = newvmid; + } + } + + return hit; +} + +static u64 new_vmid(struct kvm_vmid *kvm_vmid) +{ + static u32 cur_idx = 1; + u64 vmid = atomic64_read(&kvm_vmid->id); + u64 generation = atomic64_read(&vmid_generation); + + if (vmid != 0) { + u64 newvmid = generation | (vmid & ~VMID_MASK); + + if (check_update_reserved_vmid(vmid, newvmid)) { + atomic64_set(&kvm_vmid->id, newvmid); + return newvmid; + } + + if (!__test_and_set_bit(vmid2idx(vmid), vmid_map)) { + atomic64_set(&kvm_vmid->id, newvmid); + return newvmid; + } + } + + vmid = find_next_zero_bit(vmid_map, NUM_USER_VMIDS, cur_idx); + if (vmid != NUM_USER_VMIDS) + goto set_vmid; + + /* We're out of VMIDs, so increment the global generation count */ + generation = atomic64_add_return_relaxed(VMID_FIRST_VERSION, + &vmid_generation); + flush_context(); + + /* We have more VMIDs than CPUs, so this will always succeed */ + vmid = find_next_zero_bit(vmid_map, NUM_USER_VMIDS, 1); + +set_vmid: + __set_bit(vmid, vmid_map); + cur_idx = vmid; + vmid = idx2vmid(vmid) | generation; + atomic64_set(&kvm_vmid->id, vmid); + return vmid; +} + +/* Called from vCPU sched out with preemption disabled */ +void kvm_arm_vmid_clear_active(void) +{ + atomic64_set(this_cpu_ptr(&active_vmids), VMID_ACTIVE_INVALID); +} + +void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid) +{ + unsigned long flags; + u64 vmid, old_active_vmid; + + vmid = atomic64_read(&kvm_vmid->id); + + /* + * Please refer comments in check_and_switch_context() in + * arch/arm64/mm/context.c. + * + * Unlike ASID allocator, we set the active_vmids to + * VMID_ACTIVE_INVALID on vCPU schedule out to avoid + * reserving the VMID space needlessly on rollover. + * Hence explicitly check here for a "!= 0" to + * handle the sync with a concurrent rollover. + */ + old_active_vmid = atomic64_read(this_cpu_ptr(&active_vmids)); + if (old_active_vmid != 0 && vmid_gen_match(vmid) && + 0 != atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_vmids), + old_active_vmid, vmid)) + return; + + raw_spin_lock_irqsave(&cpu_vmid_lock, flags); + + /* Check that our VMID belongs to the current generation. */ + vmid = atomic64_read(&kvm_vmid->id); + if (!vmid_gen_match(vmid)) + vmid = new_vmid(kvm_vmid); + + atomic64_set(this_cpu_ptr(&active_vmids), vmid); + raw_spin_unlock_irqrestore(&cpu_vmid_lock, flags); +} + +/* + * Initialize the VMID allocator + */ +int kvm_arm_vmid_alloc_init(void) +{ + kvm_arm_vmid_bits = kvm_get_vmid_bits(); + + /* + * Expect allocation after rollover to fail if we don't have + * at least one more VMID than CPUs. VMID #0 is always reserved. + */ + WARN_ON(NUM_USER_VMIDS - 1 <= num_possible_cpus()); + atomic64_set(&vmid_generation, VMID_FIRST_VERSION); + vmid_map = kcalloc(BITS_TO_LONGS(NUM_USER_VMIDS), + sizeof(*vmid_map), GFP_KERNEL); + if (!vmid_map) + return -ENOMEM; + + return 0; +} + +void kvm_arm_vmid_alloc_free(void) +{ + kfree(vmid_map); +} -- cgit v1.2.3