From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- drivers/base/devcoredump.c | 426 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 426 insertions(+) create mode 100644 drivers/base/devcoredump.c (limited to 'drivers/base/devcoredump.c') diff --git a/drivers/base/devcoredump.c b/drivers/base/devcoredump.c new file mode 100644 index 000000000..1c06781f7 --- /dev/null +++ b/drivers/base/devcoredump.c @@ -0,0 +1,426 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright(c) 2014 Intel Mobile Communications GmbH + * Copyright(c) 2015 Intel Deutschland GmbH + * + * Author: Johannes Berg + */ +#include +#include +#include +#include +#include +#include +#include + +static struct class devcd_class; + +/* global disable flag, for security purposes */ +static bool devcd_disabled; + +/* if data isn't read by userspace after 5 minutes then delete it */ +#define DEVCD_TIMEOUT (HZ * 60 * 5) + +struct devcd_entry { + struct device devcd_dev; + void *data; + size_t datalen; + /* + * Here, mutex is required to serialize the calls to del_wk work between + * user/kernel space which happens when devcd is added with device_add() + * and that sends uevent to user space. User space reads the uevents, + * and calls to devcd_data_write() which try to modify the work which is + * not even initialized/queued from devcoredump. + * + * + * + * cpu0(X) cpu1(Y) + * + * dev_coredump() uevent sent to user space + * device_add() ======================> user space process Y reads the + * uevents writes to devcd fd + * which results into writes to + * + * devcd_data_write() + * mod_delayed_work() + * try_to_grab_pending() + * del_timer() + * debug_assert_init() + * INIT_DELAYED_WORK() + * schedule_delayed_work() + * + * + * Also, mutex alone would not be enough to avoid scheduling of + * del_wk work after it get flush from a call to devcd_free() + * mentioned as below. + * + * disabled_store() + * devcd_free() + * mutex_lock() devcd_data_write() + * flush_delayed_work() + * mutex_unlock() + * mutex_lock() + * mod_delayed_work() + * mutex_unlock() + * So, delete_work flag is required. + */ + struct mutex mutex; + bool delete_work; + struct module *owner; + ssize_t (*read)(char *buffer, loff_t offset, size_t count, + void *data, size_t datalen); + void (*free)(void *data); + struct delayed_work del_wk; + struct device *failing_dev; +}; + +static struct devcd_entry *dev_to_devcd(struct device *dev) +{ + return container_of(dev, struct devcd_entry, devcd_dev); +} + +static void devcd_dev_release(struct device *dev) +{ + struct devcd_entry *devcd = dev_to_devcd(dev); + + devcd->free(devcd->data); + module_put(devcd->owner); + + /* + * this seems racy, but I don't see a notifier or such on + * a struct device to know when it goes away? + */ + if (devcd->failing_dev->kobj.sd) + sysfs_delete_link(&devcd->failing_dev->kobj, &dev->kobj, + "devcoredump"); + + put_device(devcd->failing_dev); + kfree(devcd); +} + +static void devcd_del(struct work_struct *wk) +{ + struct devcd_entry *devcd; + + devcd = container_of(wk, struct devcd_entry, del_wk.work); + + device_del(&devcd->devcd_dev); + put_device(&devcd->devcd_dev); +} + +static ssize_t devcd_data_read(struct file *filp, struct kobject *kobj, + struct bin_attribute *bin_attr, + char *buffer, loff_t offset, size_t count) +{ + struct device *dev = kobj_to_dev(kobj); + struct devcd_entry *devcd = dev_to_devcd(dev); + + return devcd->read(buffer, offset, count, devcd->data, devcd->datalen); +} + +static ssize_t devcd_data_write(struct file *filp, struct kobject *kobj, + struct bin_attribute *bin_attr, + char *buffer, loff_t offset, size_t count) +{ + struct device *dev = kobj_to_dev(kobj); + struct devcd_entry *devcd = dev_to_devcd(dev); + + mutex_lock(&devcd->mutex); + if (!devcd->delete_work) { + devcd->delete_work = true; + mod_delayed_work(system_wq, &devcd->del_wk, 0); + } + mutex_unlock(&devcd->mutex); + + return count; +} + +static struct bin_attribute devcd_attr_data = { + .attr = { .name = "data", .mode = S_IRUSR | S_IWUSR, }, + .size = 0, + .read = devcd_data_read, + .write = devcd_data_write, +}; + +static struct bin_attribute *devcd_dev_bin_attrs[] = { + &devcd_attr_data, NULL, +}; + +static const struct attribute_group devcd_dev_group = { + .bin_attrs = devcd_dev_bin_attrs, +}; + +static const struct attribute_group *devcd_dev_groups[] = { + &devcd_dev_group, NULL, +}; + +static int devcd_free(struct device *dev, void *data) +{ + struct devcd_entry *devcd = dev_to_devcd(dev); + + mutex_lock(&devcd->mutex); + if (!devcd->delete_work) + devcd->delete_work = true; + + flush_delayed_work(&devcd->del_wk); + mutex_unlock(&devcd->mutex); + return 0; +} + +static ssize_t disabled_show(struct class *class, struct class_attribute *attr, + char *buf) +{ + return sysfs_emit(buf, "%d\n", devcd_disabled); +} + +/* + * + * disabled_store() worker() + * class_for_each_device(&devcd_class, + * NULL, NULL, devcd_free) + * ... + * ... + * while ((dev = class_dev_iter_next(&iter)) + * devcd_del() + * device_del() + * put_device() <- last reference + * error = fn(dev, data) devcd_dev_release() + * devcd_free(dev, data) kfree(devcd) + * mutex_lock(&devcd->mutex); + * + * + * In the above diagram, It looks like disabled_store() would be racing with parallely + * running devcd_del() and result in memory abort while acquiring devcd->mutex which + * is called after kfree of devcd memory after dropping its last reference with + * put_device(). However, this will not happens as fn(dev, data) runs + * with its own reference to device via klist_node so it is not its last reference. + * so, above situation would not occur. + */ + +static ssize_t disabled_store(struct class *class, struct class_attribute *attr, + const char *buf, size_t count) +{ + long tmp = simple_strtol(buf, NULL, 10); + + /* + * This essentially makes the attribute write-once, since you can't + * go back to not having it disabled. This is intentional, it serves + * as a system lockdown feature. + */ + if (tmp != 1) + return -EINVAL; + + devcd_disabled = true; + + class_for_each_device(&devcd_class, NULL, NULL, devcd_free); + + return count; +} +static CLASS_ATTR_RW(disabled); + +static struct attribute *devcd_class_attrs[] = { + &class_attr_disabled.attr, + NULL, +}; +ATTRIBUTE_GROUPS(devcd_class); + +static struct class devcd_class = { + .name = "devcoredump", + .owner = THIS_MODULE, + .dev_release = devcd_dev_release, + .dev_groups = devcd_dev_groups, + .class_groups = devcd_class_groups, +}; + +static ssize_t devcd_readv(char *buffer, loff_t offset, size_t count, + void *data, size_t datalen) +{ + return memory_read_from_buffer(buffer, count, &offset, data, datalen); +} + +static void devcd_freev(void *data) +{ + vfree(data); +} + +/** + * dev_coredumpv - create device coredump with vmalloc data + * @dev: the struct device for the crashed device + * @data: vmalloc data containing the device coredump + * @datalen: length of the data + * @gfp: allocation flags + * + * This function takes ownership of the vmalloc'ed data and will free + * it when it is no longer used. See dev_coredumpm() for more information. + */ +void dev_coredumpv(struct device *dev, void *data, size_t datalen, + gfp_t gfp) +{ + dev_coredumpm(dev, NULL, data, datalen, gfp, devcd_readv, devcd_freev); +} +EXPORT_SYMBOL_GPL(dev_coredumpv); + +static int devcd_match_failing(struct device *dev, const void *failing) +{ + struct devcd_entry *devcd = dev_to_devcd(dev); + + return devcd->failing_dev == failing; +} + +/** + * devcd_free_sgtable - free all the memory of the given scatterlist table + * (i.e. both pages and scatterlist instances) + * NOTE: if two tables allocated with devcd_alloc_sgtable and then chained + * using the sg_chain function then that function should be called only once + * on the chained table + * @data: pointer to sg_table to free + */ +static void devcd_free_sgtable(void *data) +{ + _devcd_free_sgtable(data); +} + +/** + * devcd_read_from_sgtable - copy data from sg_table to a given buffer + * and return the number of bytes read + * @buffer: the buffer to copy the data to it + * @buf_len: the length of the buffer + * @data: the scatterlist table to copy from + * @offset: start copy from @offset@ bytes from the head of the data + * in the given scatterlist + * @data_len: the length of the data in the sg_table + */ +static ssize_t devcd_read_from_sgtable(char *buffer, loff_t offset, + size_t buf_len, void *data, + size_t data_len) +{ + struct scatterlist *table = data; + + if (offset > data_len) + return -EINVAL; + + if (offset + buf_len > data_len) + buf_len = data_len - offset; + return sg_pcopy_to_buffer(table, sg_nents(table), buffer, buf_len, + offset); +} + +/** + * dev_coredumpm - create device coredump with read/free methods + * @dev: the struct device for the crashed device + * @owner: the module that contains the read/free functions, use %THIS_MODULE + * @data: data cookie for the @read/@free functions + * @datalen: length of the data + * @gfp: allocation flags + * @read: function to read from the given buffer + * @free: function to free the given buffer + * + * Creates a new device coredump for the given device. If a previous one hasn't + * been read yet, the new coredump is discarded. The data lifetime is determined + * by the device coredump framework and when it is no longer needed the @free + * function will be called to free the data. + */ +void dev_coredumpm(struct device *dev, struct module *owner, + void *data, size_t datalen, gfp_t gfp, + ssize_t (*read)(char *buffer, loff_t offset, size_t count, + void *data, size_t datalen), + void (*free)(void *data)) +{ + static atomic_t devcd_count = ATOMIC_INIT(0); + struct devcd_entry *devcd; + struct device *existing; + + if (devcd_disabled) + goto free; + + existing = class_find_device(&devcd_class, NULL, dev, + devcd_match_failing); + if (existing) { + put_device(existing); + goto free; + } + + if (!try_module_get(owner)) + goto free; + + devcd = kzalloc(sizeof(*devcd), gfp); + if (!devcd) + goto put_module; + + devcd->owner = owner; + devcd->data = data; + devcd->datalen = datalen; + devcd->read = read; + devcd->free = free; + devcd->failing_dev = get_device(dev); + devcd->delete_work = false; + + mutex_init(&devcd->mutex); + device_initialize(&devcd->devcd_dev); + + dev_set_name(&devcd->devcd_dev, "devcd%d", + atomic_inc_return(&devcd_count)); + devcd->devcd_dev.class = &devcd_class; + + mutex_lock(&devcd->mutex); + if (device_add(&devcd->devcd_dev)) + goto put_device; + + /* + * These should normally not fail, but there is no problem + * continuing without the links, so just warn instead of + * failing. + */ + if (sysfs_create_link(&devcd->devcd_dev.kobj, &dev->kobj, + "failing_device") || + sysfs_create_link(&dev->kobj, &devcd->devcd_dev.kobj, + "devcoredump")) + dev_warn(dev, "devcoredump create_link failed\n"); + + INIT_DELAYED_WORK(&devcd->del_wk, devcd_del); + schedule_delayed_work(&devcd->del_wk, DEVCD_TIMEOUT); + mutex_unlock(&devcd->mutex); + return; + put_device: + put_device(&devcd->devcd_dev); + mutex_unlock(&devcd->mutex); + put_module: + module_put(owner); + free: + free(data); +} +EXPORT_SYMBOL_GPL(dev_coredumpm); + +/** + * dev_coredumpsg - create device coredump that uses scatterlist as data + * parameter + * @dev: the struct device for the crashed device + * @table: the dump data + * @datalen: length of the data + * @gfp: allocation flags + * + * Creates a new device coredump for the given device. If a previous one hasn't + * been read yet, the new coredump is discarded. The data lifetime is determined + * by the device coredump framework and when it is no longer needed + * it will free the data. + */ +void dev_coredumpsg(struct device *dev, struct scatterlist *table, + size_t datalen, gfp_t gfp) +{ + dev_coredumpm(dev, NULL, table, datalen, gfp, devcd_read_from_sgtable, + devcd_free_sgtable); +} +EXPORT_SYMBOL_GPL(dev_coredumpsg); + +static int __init devcoredump_init(void) +{ + return class_register(&devcd_class); +} +__initcall(devcoredump_init); + +static void __exit devcoredump_exit(void) +{ + class_for_each_device(&devcd_class, NULL, NULL, devcd_free); + class_unregister(&devcd_class); +} +__exitcall(devcoredump_exit); -- cgit v1.2.3