From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- drivers/gpu/drm/i915/i915_gem_gtt.c | 297 ++++++++++++++++++++++++++++++++++++ 1 file changed, 297 insertions(+) create mode 100644 drivers/gpu/drm/i915/i915_gem_gtt.c (limited to 'drivers/gpu/drm/i915/i915_gem_gtt.c') diff --git a/drivers/gpu/drm/i915/i915_gem_gtt.c b/drivers/gpu/drm/i915/i915_gem_gtt.c new file mode 100644 index 000000000..7bd1861dd --- /dev/null +++ b/drivers/gpu/drm/i915/i915_gem_gtt.c @@ -0,0 +1,297 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2010 Daniel Vetter + * Copyright © 2020 Intel Corporation + */ + +#include /* fault-inject.h is not standalone! */ + +#include +#include +#include +#include +#include + +#include +#include + +#include "display/intel_frontbuffer.h" +#include "gt/intel_gt.h" +#include "gt/intel_gt_requests.h" + +#include "i915_drv.h" +#include "i915_gem_evict.h" +#include "i915_scatterlist.h" +#include "i915_trace.h" +#include "i915_vgpu.h" + +int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, + struct sg_table *pages) +{ + do { + if (dma_map_sg_attrs(obj->base.dev->dev, + pages->sgl, pages->nents, + DMA_BIDIRECTIONAL, + DMA_ATTR_SKIP_CPU_SYNC | + DMA_ATTR_NO_KERNEL_MAPPING | + DMA_ATTR_NO_WARN)) + return 0; + + /* + * If the DMA remap fails, one cause can be that we have + * too many objects pinned in a small remapping table, + * such as swiotlb. Incrementally purge all other objects and + * try again - if there are no more pages to remove from + * the DMA remapper, i915_gem_shrink will return 0. + */ + GEM_BUG_ON(obj->mm.pages == pages); + } while (i915_gem_shrink(NULL, to_i915(obj->base.dev), + obj->base.size >> PAGE_SHIFT, NULL, + I915_SHRINK_BOUND | + I915_SHRINK_UNBOUND)); + + return -ENOSPC; +} + +void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, + struct sg_table *pages) +{ + struct drm_i915_private *i915 = to_i915(obj->base.dev); + struct i915_ggtt *ggtt = to_gt(i915)->ggtt; + + /* XXX This does not prevent more requests being submitted! */ + if (unlikely(ggtt->do_idle_maps)) + /* Wait a bit, in the hope it avoids the hang */ + usleep_range(100, 250); + + dma_unmap_sg(i915->drm.dev, pages->sgl, pages->nents, + DMA_BIDIRECTIONAL); +} + +/** + * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) + * @vm: the &struct i915_address_space + * @ww: An optional struct i915_gem_ww_ctx. + * @node: the &struct drm_mm_node (typically i915_vma.mode) + * @size: how much space to allocate inside the GTT, + * must be #I915_GTT_PAGE_SIZE aligned + * @offset: where to insert inside the GTT, + * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node + * (@offset + @size) must fit within the address space + * @color: color to apply to node, if this node is not from a VMA, + * color must be #I915_COLOR_UNEVICTABLE + * @flags: control search and eviction behaviour + * + * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside + * the address space (using @size and @color). If the @node does not fit, it + * tries to evict any overlapping nodes from the GTT, including any + * neighbouring nodes if the colors do not match (to ensure guard pages between + * differing domains). See i915_gem_evict_for_node() for the gory details + * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on + * evicting active overlapping objects, and any overlapping node that is pinned + * or marked as unevictable will also result in failure. + * + * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if + * asked to wait for eviction and interrupted. + */ +int i915_gem_gtt_reserve(struct i915_address_space *vm, + struct i915_gem_ww_ctx *ww, + struct drm_mm_node *node, + u64 size, u64 offset, unsigned long color, + unsigned int flags) +{ + int err; + + GEM_BUG_ON(!size); + GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); + GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); + GEM_BUG_ON(range_overflows(offset, size, vm->total)); + GEM_BUG_ON(vm == &to_gt(vm->i915)->ggtt->alias->vm); + GEM_BUG_ON(drm_mm_node_allocated(node)); + + node->size = size; + node->start = offset; + node->color = color; + + err = drm_mm_reserve_node(&vm->mm, node); + if (err != -ENOSPC) + return err; + + if (flags & PIN_NOEVICT) + return -ENOSPC; + + err = i915_gem_evict_for_node(vm, ww, node, flags); + if (err == 0) + err = drm_mm_reserve_node(&vm->mm, node); + + return err; +} + +static u64 random_offset(u64 start, u64 end, u64 len, u64 align) +{ + u64 range, addr; + + GEM_BUG_ON(range_overflows(start, len, end)); + GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); + + range = round_down(end - len, align) - round_up(start, align); + if (range) { + if (sizeof(unsigned long) == sizeof(u64)) { + addr = get_random_u64(); + } else { + addr = get_random_u32(); + if (range > U32_MAX) { + addr <<= 32; + addr |= get_random_u32(); + } + } + div64_u64_rem(addr, range, &addr); + start += addr; + } + + return round_up(start, align); +} + +/** + * i915_gem_gtt_insert - insert a node into an address_space (GTT) + * @vm: the &struct i915_address_space + * @ww: An optional struct i915_gem_ww_ctx. + * @node: the &struct drm_mm_node (typically i915_vma.node) + * @size: how much space to allocate inside the GTT, + * must be #I915_GTT_PAGE_SIZE aligned + * @alignment: required alignment of starting offset, may be 0 but + * if specified, this must be a power-of-two and at least + * #I915_GTT_MIN_ALIGNMENT + * @color: color to apply to node + * @start: start of any range restriction inside GTT (0 for all), + * must be #I915_GTT_PAGE_SIZE aligned + * @end: end of any range restriction inside GTT (U64_MAX for all), + * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX + * @flags: control search and eviction behaviour + * + * i915_gem_gtt_insert() first searches for an available hole into which + * is can insert the node. The hole address is aligned to @alignment and + * its @size must then fit entirely within the [@start, @end] bounds. The + * nodes on either side of the hole must match @color, or else a guard page + * will be inserted between the two nodes (or the node evicted). If no + * suitable hole is found, first a victim is randomly selected and tested + * for eviction, otherwise then the LRU list of objects within the GTT + * is scanned to find the first set of replacement nodes to create the hole. + * Those old overlapping nodes are evicted from the GTT (and so must be + * rebound before any future use). Any node that is currently pinned cannot + * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently + * active and #PIN_NONBLOCK is specified, that node is also skipped when + * searching for an eviction candidate. See i915_gem_evict_something() for + * the gory details on the eviction algorithm. + * + * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if + * asked to wait for eviction and interrupted. + */ +int i915_gem_gtt_insert(struct i915_address_space *vm, + struct i915_gem_ww_ctx *ww, + struct drm_mm_node *node, + u64 size, u64 alignment, unsigned long color, + u64 start, u64 end, unsigned int flags) +{ + enum drm_mm_insert_mode mode; + u64 offset; + int err; + + lockdep_assert_held(&vm->mutex); + + GEM_BUG_ON(!size); + GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); + GEM_BUG_ON(alignment && !is_power_of_2(alignment)); + GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); + GEM_BUG_ON(start >= end); + GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); + GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); + GEM_BUG_ON(vm == &to_gt(vm->i915)->ggtt->alias->vm); + GEM_BUG_ON(drm_mm_node_allocated(node)); + + if (unlikely(range_overflows(start, size, end))) + return -ENOSPC; + + if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) + return -ENOSPC; + + mode = DRM_MM_INSERT_BEST; + if (flags & PIN_HIGH) + mode = DRM_MM_INSERT_HIGHEST; + if (flags & PIN_MAPPABLE) + mode = DRM_MM_INSERT_LOW; + + /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, + * so we know that we always have a minimum alignment of 4096. + * The drm_mm range manager is optimised to return results + * with zero alignment, so where possible use the optimal + * path. + */ + BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); + if (alignment <= I915_GTT_MIN_ALIGNMENT) + alignment = 0; + + err = drm_mm_insert_node_in_range(&vm->mm, node, + size, alignment, color, + start, end, mode); + if (err != -ENOSPC) + return err; + + if (mode & DRM_MM_INSERT_ONCE) { + err = drm_mm_insert_node_in_range(&vm->mm, node, + size, alignment, color, + start, end, + DRM_MM_INSERT_BEST); + if (err != -ENOSPC) + return err; + } + + if (flags & PIN_NOEVICT) + return -ENOSPC; + + /* + * No free space, pick a slot at random. + * + * There is a pathological case here using a GTT shared between + * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): + * + * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| + * (64k objects) (448k objects) + * + * Now imagine that the eviction LRU is ordered top-down (just because + * pathology meets real life), and that we need to evict an object to + * make room inside the aperture. The eviction scan then has to walk + * the 448k list before it finds one within range. And now imagine that + * it has to search for a new hole between every byte inside the memcpy, + * for several simultaneous clients. + * + * On a full-ppgtt system, if we have run out of available space, there + * will be lots and lots of objects in the eviction list! Again, + * searching that LRU list may be slow if we are also applying any + * range restrictions (e.g. restriction to low 4GiB) and so, for + * simplicity and similarilty between different GTT, try the single + * random replacement first. + */ + offset = random_offset(start, end, + size, alignment ?: I915_GTT_MIN_ALIGNMENT); + err = i915_gem_gtt_reserve(vm, ww, node, size, offset, color, flags); + if (err != -ENOSPC) + return err; + + if (flags & PIN_NOSEARCH) + return -ENOSPC; + + /* Randomly selected placement is pinned, do a search */ + err = i915_gem_evict_something(vm, ww, size, alignment, color, + start, end, flags); + if (err) + return err; + + return drm_mm_insert_node_in_range(&vm->mm, node, + size, alignment, color, + start, end, DRM_MM_INSERT_EVICT); +} + +#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) +#include "selftests/i915_gem_gtt.c" +#endif -- cgit v1.2.3