From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- drivers/gpu/drm/vmwgfx/vmwgfx_cotable.c | 670 ++++++++++++++++++++++++++++++++ 1 file changed, 670 insertions(+) create mode 100644 drivers/gpu/drm/vmwgfx/vmwgfx_cotable.c (limited to 'drivers/gpu/drm/vmwgfx/vmwgfx_cotable.c') diff --git a/drivers/gpu/drm/vmwgfx/vmwgfx_cotable.c b/drivers/gpu/drm/vmwgfx/vmwgfx_cotable.c new file mode 100644 index 000000000..b78a10312 --- /dev/null +++ b/drivers/gpu/drm/vmwgfx/vmwgfx_cotable.c @@ -0,0 +1,670 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT +/************************************************************************** + * + * Copyright 2014-2015 VMware, Inc., Palo Alto, CA., USA + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, + * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR + * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE + * USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ +/* + * Treat context OTables as resources to make use of the resource + * backing MOB eviction mechanism, that is used to read back the COTable + * whenever the backing MOB is evicted. + */ + +#include + +#include "vmwgfx_drv.h" +#include "vmwgfx_mksstat.h" +#include "vmwgfx_resource_priv.h" +#include "vmwgfx_so.h" + +/** + * struct vmw_cotable - Context Object Table resource + * + * @res: struct vmw_resource we are deriving from. + * @ctx: non-refcounted pointer to the owning context. + * @size_read_back: Size of data read back during eviction. + * @seen_entries: Seen entries in command stream for this cotable. + * @type: The cotable type. + * @scrubbed: Whether the cotable has been scrubbed. + * @resource_list: List of resources in the cotable. + */ +struct vmw_cotable { + struct vmw_resource res; + struct vmw_resource *ctx; + size_t size_read_back; + int seen_entries; + u32 type; + bool scrubbed; + struct list_head resource_list; +}; + +/** + * struct vmw_cotable_info - Static info about cotable types + * + * @min_initial_entries: Min number of initial intries at cotable allocation + * for this cotable type. + * @size: Size of each entry. + * @unbind_func: Unbind call-back function. + */ +struct vmw_cotable_info { + u32 min_initial_entries; + u32 size; + void (*unbind_func)(struct vmw_private *, struct list_head *, + bool); +}; + + +/* + * Getting the initial size right is difficult because it all depends + * on what the userspace is doing. The sizes will be aligned up to + * a PAGE_SIZE so we just want to make sure that for majority of apps + * the initial number of entries doesn't require an immediate resize. + * For all cotables except SVGACOTableDXElementLayoutEntry and + * SVGACOTableDXBlendStateEntry the initial number of entries fits + * within the PAGE_SIZE. For SVGACOTableDXElementLayoutEntry and + * SVGACOTableDXBlendStateEntry we want to reserve two pages, + * because that's what all apps will require initially. + */ +static const struct vmw_cotable_info co_info[] = { + {1, sizeof(SVGACOTableDXRTViewEntry), &vmw_view_cotable_list_destroy}, + {1, sizeof(SVGACOTableDXDSViewEntry), &vmw_view_cotable_list_destroy}, + {1, sizeof(SVGACOTableDXSRViewEntry), &vmw_view_cotable_list_destroy}, + {PAGE_SIZE/sizeof(SVGACOTableDXElementLayoutEntry) + 1, sizeof(SVGACOTableDXElementLayoutEntry), NULL}, + {PAGE_SIZE/sizeof(SVGACOTableDXBlendStateEntry) + 1, sizeof(SVGACOTableDXBlendStateEntry), NULL}, + {1, sizeof(SVGACOTableDXDepthStencilEntry), NULL}, + {1, sizeof(SVGACOTableDXRasterizerStateEntry), NULL}, + {1, sizeof(SVGACOTableDXSamplerEntry), NULL}, + {1, sizeof(SVGACOTableDXStreamOutputEntry), &vmw_dx_streamoutput_cotable_list_scrub}, + {1, sizeof(SVGACOTableDXQueryEntry), NULL}, + {1, sizeof(SVGACOTableDXShaderEntry), &vmw_dx_shader_cotable_list_scrub}, + {1, sizeof(SVGACOTableDXUAViewEntry), &vmw_view_cotable_list_destroy} +}; + +/* + * Cotables with bindings that we remove must be scrubbed first, + * otherwise, the device will swap in an invalid context when we remove + * bindings before scrubbing a cotable... + */ +const SVGACOTableType vmw_cotable_scrub_order[] = { + SVGA_COTABLE_RTVIEW, + SVGA_COTABLE_DSVIEW, + SVGA_COTABLE_SRVIEW, + SVGA_COTABLE_DXSHADER, + SVGA_COTABLE_ELEMENTLAYOUT, + SVGA_COTABLE_BLENDSTATE, + SVGA_COTABLE_DEPTHSTENCIL, + SVGA_COTABLE_RASTERIZERSTATE, + SVGA_COTABLE_SAMPLER, + SVGA_COTABLE_STREAMOUTPUT, + SVGA_COTABLE_DXQUERY, + SVGA_COTABLE_UAVIEW, +}; + +static int vmw_cotable_bind(struct vmw_resource *res, + struct ttm_validate_buffer *val_buf); +static int vmw_cotable_unbind(struct vmw_resource *res, + bool readback, + struct ttm_validate_buffer *val_buf); +static int vmw_cotable_create(struct vmw_resource *res); +static int vmw_cotable_destroy(struct vmw_resource *res); + +static const struct vmw_res_func vmw_cotable_func = { + .res_type = vmw_res_cotable, + .needs_backup = true, + .may_evict = true, + .prio = 3, + .dirty_prio = 3, + .type_name = "context guest backed object tables", + .backup_placement = &vmw_mob_placement, + .create = vmw_cotable_create, + .destroy = vmw_cotable_destroy, + .bind = vmw_cotable_bind, + .unbind = vmw_cotable_unbind, +}; + +/** + * vmw_cotable - Convert a struct vmw_resource pointer to a struct + * vmw_cotable pointer + * + * @res: Pointer to the resource. + */ +static struct vmw_cotable *vmw_cotable(struct vmw_resource *res) +{ + return container_of(res, struct vmw_cotable, res); +} + +/** + * vmw_cotable_destroy - Cotable resource destroy callback + * + * @res: Pointer to the cotable resource. + * + * There is no device cotable destroy command, so this function only + * makes sure that the resource id is set to invalid. + */ +static int vmw_cotable_destroy(struct vmw_resource *res) +{ + res->id = -1; + return 0; +} + +/** + * vmw_cotable_unscrub - Undo a cotable unscrub operation + * + * @res: Pointer to the cotable resource + * + * This function issues commands to (re)bind the cotable to + * its backing mob, which needs to be validated and reserved at this point. + * This is identical to bind() except the function interface looks different. + */ +static int vmw_cotable_unscrub(struct vmw_resource *res) +{ + struct vmw_cotable *vcotbl = vmw_cotable(res); + struct vmw_private *dev_priv = res->dev_priv; + struct ttm_buffer_object *bo = &res->backup->base; + struct { + SVGA3dCmdHeader header; + SVGA3dCmdDXSetCOTable body; + } *cmd; + + WARN_ON_ONCE(bo->resource->mem_type != VMW_PL_MOB); + dma_resv_assert_held(bo->base.resv); + + cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); + if (!cmd) + return -ENOMEM; + + WARN_ON(vcotbl->ctx->id == SVGA3D_INVALID_ID); + WARN_ON(bo->resource->mem_type != VMW_PL_MOB); + cmd->header.id = SVGA_3D_CMD_DX_SET_COTABLE; + cmd->header.size = sizeof(cmd->body); + cmd->body.cid = vcotbl->ctx->id; + cmd->body.type = vcotbl->type; + cmd->body.mobid = bo->resource->start; + cmd->body.validSizeInBytes = vcotbl->size_read_back; + + vmw_cmd_commit_flush(dev_priv, sizeof(*cmd)); + vcotbl->scrubbed = false; + + return 0; +} + +/** + * vmw_cotable_bind - Undo a cotable unscrub operation + * + * @res: Pointer to the cotable resource + * @val_buf: Pointer to a struct ttm_validate_buffer prepared by the caller + * for convenience / fencing. + * + * This function issues commands to (re)bind the cotable to + * its backing mob, which needs to be validated and reserved at this point. + */ +static int vmw_cotable_bind(struct vmw_resource *res, + struct ttm_validate_buffer *val_buf) +{ + /* + * The create() callback may have changed @res->backup without + * the caller noticing, and with val_buf->bo still pointing to + * the old backup buffer. Although hackish, and not used currently, + * take the opportunity to correct the value here so that it's not + * misused in the future. + */ + val_buf->bo = &res->backup->base; + + return vmw_cotable_unscrub(res); +} + +/** + * vmw_cotable_scrub - Scrub the cotable from the device. + * + * @res: Pointer to the cotable resource. + * @readback: Whether initiate a readback of the cotable data to the backup + * buffer. + * + * In some situations (context swapouts) it might be desirable to make the + * device forget about the cotable without performing a full unbind. A full + * unbind requires reserved backup buffers and it might not be possible to + * reserve them due to locking order violation issues. The vmw_cotable_scrub + * function implements a partial unbind() without that requirement but with the + * following restrictions. + * 1) Before the cotable is again used by the GPU, vmw_cotable_unscrub() must + * be called. + * 2) Before the cotable backing buffer is used by the CPU, or during the + * resource destruction, vmw_cotable_unbind() must be called. + */ +int vmw_cotable_scrub(struct vmw_resource *res, bool readback) +{ + struct vmw_cotable *vcotbl = vmw_cotable(res); + struct vmw_private *dev_priv = res->dev_priv; + size_t submit_size; + + struct { + SVGA3dCmdHeader header; + SVGA3dCmdDXReadbackCOTable body; + } *cmd0; + struct { + SVGA3dCmdHeader header; + SVGA3dCmdDXSetCOTable body; + } *cmd1; + + if (vcotbl->scrubbed) + return 0; + + if (co_info[vcotbl->type].unbind_func) + co_info[vcotbl->type].unbind_func(dev_priv, + &vcotbl->resource_list, + readback); + submit_size = sizeof(*cmd1); + if (readback) + submit_size += sizeof(*cmd0); + + cmd1 = VMW_CMD_RESERVE(dev_priv, submit_size); + if (!cmd1) + return -ENOMEM; + + vcotbl->size_read_back = 0; + if (readback) { + cmd0 = (void *) cmd1; + cmd0->header.id = SVGA_3D_CMD_DX_READBACK_COTABLE; + cmd0->header.size = sizeof(cmd0->body); + cmd0->body.cid = vcotbl->ctx->id; + cmd0->body.type = vcotbl->type; + cmd1 = (void *) &cmd0[1]; + vcotbl->size_read_back = res->backup_size; + } + cmd1->header.id = SVGA_3D_CMD_DX_SET_COTABLE; + cmd1->header.size = sizeof(cmd1->body); + cmd1->body.cid = vcotbl->ctx->id; + cmd1->body.type = vcotbl->type; + cmd1->body.mobid = SVGA3D_INVALID_ID; + cmd1->body.validSizeInBytes = 0; + vmw_cmd_commit_flush(dev_priv, submit_size); + vcotbl->scrubbed = true; + + /* Trigger a create() on next validate. */ + res->id = -1; + + return 0; +} + +/** + * vmw_cotable_unbind - Cotable resource unbind callback + * + * @res: Pointer to the cotable resource. + * @readback: Whether to read back cotable data to the backup buffer. + * @val_buf: Pointer to a struct ttm_validate_buffer prepared by the caller + * for convenience / fencing. + * + * Unbinds the cotable from the device and fences the backup buffer. + */ +static int vmw_cotable_unbind(struct vmw_resource *res, + bool readback, + struct ttm_validate_buffer *val_buf) +{ + struct vmw_cotable *vcotbl = vmw_cotable(res); + struct vmw_private *dev_priv = res->dev_priv; + struct ttm_buffer_object *bo = val_buf->bo; + struct vmw_fence_obj *fence; + + if (!vmw_resource_mob_attached(res)) + return 0; + + WARN_ON_ONCE(bo->resource->mem_type != VMW_PL_MOB); + dma_resv_assert_held(bo->base.resv); + + mutex_lock(&dev_priv->binding_mutex); + if (!vcotbl->scrubbed) + vmw_dx_context_scrub_cotables(vcotbl->ctx, readback); + mutex_unlock(&dev_priv->binding_mutex); + (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); + vmw_bo_fence_single(bo, fence); + if (likely(fence != NULL)) + vmw_fence_obj_unreference(&fence); + + return 0; +} + +/** + * vmw_cotable_readback - Read back a cotable without unbinding. + * + * @res: The cotable resource. + * + * Reads back a cotable to its backing mob without scrubbing the MOB from + * the cotable. The MOB is fenced for subsequent CPU access. + */ +static int vmw_cotable_readback(struct vmw_resource *res) +{ + struct vmw_cotable *vcotbl = vmw_cotable(res); + struct vmw_private *dev_priv = res->dev_priv; + + struct { + SVGA3dCmdHeader header; + SVGA3dCmdDXReadbackCOTable body; + } *cmd; + struct vmw_fence_obj *fence; + + if (!vcotbl->scrubbed) { + cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); + if (!cmd) + return -ENOMEM; + + cmd->header.id = SVGA_3D_CMD_DX_READBACK_COTABLE; + cmd->header.size = sizeof(cmd->body); + cmd->body.cid = vcotbl->ctx->id; + cmd->body.type = vcotbl->type; + vcotbl->size_read_back = res->backup_size; + vmw_cmd_commit(dev_priv, sizeof(*cmd)); + } + + (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); + vmw_bo_fence_single(&res->backup->base, fence); + vmw_fence_obj_unreference(&fence); + + return 0; +} + +/** + * vmw_cotable_resize - Resize a cotable. + * + * @res: The cotable resource. + * @new_size: The new size. + * + * Resizes a cotable and binds the new backup buffer. + * On failure the cotable is left intact. + * Important! This function may not fail once the MOB switch has been + * committed to hardware. That would put the device context in an + * invalid state which we can't currently recover from. + */ +static int vmw_cotable_resize(struct vmw_resource *res, size_t new_size) +{ + struct ttm_operation_ctx ctx = { false, false }; + struct vmw_private *dev_priv = res->dev_priv; + struct vmw_cotable *vcotbl = vmw_cotable(res); + struct vmw_buffer_object *buf, *old_buf = res->backup; + struct ttm_buffer_object *bo, *old_bo = &res->backup->base; + size_t old_size = res->backup_size; + size_t old_size_read_back = vcotbl->size_read_back; + size_t cur_size_read_back; + struct ttm_bo_kmap_obj old_map, new_map; + int ret; + size_t i; + + MKS_STAT_TIME_DECL(MKSSTAT_KERN_COTABLE_RESIZE); + MKS_STAT_TIME_PUSH(MKSSTAT_KERN_COTABLE_RESIZE); + + ret = vmw_cotable_readback(res); + if (ret) + goto out_done; + + cur_size_read_back = vcotbl->size_read_back; + vcotbl->size_read_back = old_size_read_back; + + /* + * While device is processing, Allocate and reserve a buffer object + * for the new COTable. Initially pin the buffer object to make sure + * we can use tryreserve without failure. + */ + ret = vmw_bo_create(dev_priv, new_size, &vmw_mob_placement, + true, true, vmw_bo_bo_free, &buf); + if (ret) { + DRM_ERROR("Failed initializing new cotable MOB.\n"); + goto out_done; + } + + bo = &buf->base; + WARN_ON_ONCE(ttm_bo_reserve(bo, false, true, NULL)); + + ret = ttm_bo_wait(old_bo, false, false); + if (unlikely(ret != 0)) { + DRM_ERROR("Failed waiting for cotable unbind.\n"); + goto out_wait; + } + + /* + * Do a page by page copy of COTables. This eliminates slow vmap()s. + * This should really be a TTM utility. + */ + for (i = 0; i < PFN_UP(old_bo->resource->size); ++i) { + bool dummy; + + ret = ttm_bo_kmap(old_bo, i, 1, &old_map); + if (unlikely(ret != 0)) { + DRM_ERROR("Failed mapping old COTable on resize.\n"); + goto out_wait; + } + ret = ttm_bo_kmap(bo, i, 1, &new_map); + if (unlikely(ret != 0)) { + DRM_ERROR("Failed mapping new COTable on resize.\n"); + goto out_map_new; + } + memcpy(ttm_kmap_obj_virtual(&new_map, &dummy), + ttm_kmap_obj_virtual(&old_map, &dummy), + PAGE_SIZE); + ttm_bo_kunmap(&new_map); + ttm_bo_kunmap(&old_map); + } + + /* Unpin new buffer, and switch backup buffers. */ + ret = ttm_bo_validate(bo, &vmw_mob_placement, &ctx); + if (unlikely(ret != 0)) { + DRM_ERROR("Failed validating new COTable backup buffer.\n"); + goto out_wait; + } + + vmw_resource_mob_detach(res); + res->backup = buf; + res->backup_size = new_size; + vcotbl->size_read_back = cur_size_read_back; + + /* + * Now tell the device to switch. If this fails, then we need to + * revert the full resize. + */ + ret = vmw_cotable_unscrub(res); + if (ret) { + DRM_ERROR("Failed switching COTable backup buffer.\n"); + res->backup = old_buf; + res->backup_size = old_size; + vcotbl->size_read_back = old_size_read_back; + vmw_resource_mob_attach(res); + goto out_wait; + } + + vmw_resource_mob_attach(res); + /* Let go of the old mob. */ + vmw_bo_unreference(&old_buf); + res->id = vcotbl->type; + + ret = dma_resv_reserve_fences(bo->base.resv, 1); + if (unlikely(ret)) + goto out_wait; + + /* Release the pin acquired in vmw_bo_init */ + ttm_bo_unpin(bo); + + MKS_STAT_TIME_POP(MKSSTAT_KERN_COTABLE_RESIZE); + + return 0; + +out_map_new: + ttm_bo_kunmap(&old_map); +out_wait: + ttm_bo_unpin(bo); + ttm_bo_unreserve(bo); + vmw_bo_unreference(&buf); + +out_done: + MKS_STAT_TIME_POP(MKSSTAT_KERN_COTABLE_RESIZE); + + return ret; +} + +/** + * vmw_cotable_create - Cotable resource create callback + * + * @res: Pointer to a cotable resource. + * + * There is no separate create command for cotables, so this callback, which + * is called before bind() in the validation sequence is instead used for two + * things. + * 1) Unscrub the cotable if it is scrubbed and still attached to a backup + * buffer. + * 2) Resize the cotable if needed. + */ +static int vmw_cotable_create(struct vmw_resource *res) +{ + struct vmw_cotable *vcotbl = vmw_cotable(res); + size_t new_size = res->backup_size; + size_t needed_size; + int ret; + + /* Check whether we need to resize the cotable */ + needed_size = (vcotbl->seen_entries + 1) * co_info[vcotbl->type].size; + while (needed_size > new_size) + new_size *= 2; + + if (likely(new_size <= res->backup_size)) { + if (vcotbl->scrubbed && vmw_resource_mob_attached(res)) { + ret = vmw_cotable_unscrub(res); + if (ret) + return ret; + } + res->id = vcotbl->type; + return 0; + } + + return vmw_cotable_resize(res, new_size); +} + +/** + * vmw_hw_cotable_destroy - Cotable hw_destroy callback + * + * @res: Pointer to a cotable resource. + * + * The final (part of resource destruction) destroy callback. + */ +static void vmw_hw_cotable_destroy(struct vmw_resource *res) +{ + (void) vmw_cotable_destroy(res); +} + +/** + * vmw_cotable_free - Cotable resource destructor + * + * @res: Pointer to a cotable resource. + */ +static void vmw_cotable_free(struct vmw_resource *res) +{ + kfree(res); +} + +/** + * vmw_cotable_alloc - Create a cotable resource + * + * @dev_priv: Pointer to a device private struct. + * @ctx: Pointer to the context resource. + * The cotable resource will not add a refcount. + * @type: The cotable type. + */ +struct vmw_resource *vmw_cotable_alloc(struct vmw_private *dev_priv, + struct vmw_resource *ctx, + u32 type) +{ + struct vmw_cotable *vcotbl; + int ret; + u32 num_entries; + + vcotbl = kzalloc(sizeof(*vcotbl), GFP_KERNEL); + if (unlikely(!vcotbl)) { + ret = -ENOMEM; + goto out_no_alloc; + } + + ret = vmw_resource_init(dev_priv, &vcotbl->res, true, + vmw_cotable_free, &vmw_cotable_func); + if (unlikely(ret != 0)) + goto out_no_init; + + INIT_LIST_HEAD(&vcotbl->resource_list); + vcotbl->res.id = type; + vcotbl->res.backup_size = PAGE_SIZE; + num_entries = PAGE_SIZE / co_info[type].size; + if (num_entries < co_info[type].min_initial_entries) { + vcotbl->res.backup_size = co_info[type].min_initial_entries * + co_info[type].size; + vcotbl->res.backup_size = PFN_ALIGN(vcotbl->res.backup_size); + } + + vcotbl->scrubbed = true; + vcotbl->seen_entries = -1; + vcotbl->type = type; + vcotbl->ctx = ctx; + + vcotbl->res.hw_destroy = vmw_hw_cotable_destroy; + + return &vcotbl->res; + +out_no_init: + kfree(vcotbl); +out_no_alloc: + return ERR_PTR(ret); +} + +/** + * vmw_cotable_notify - Notify the cotable about an item creation + * + * @res: Pointer to a cotable resource. + * @id: Item id. + */ +int vmw_cotable_notify(struct vmw_resource *res, int id) +{ + struct vmw_cotable *vcotbl = vmw_cotable(res); + + if (id < 0 || id >= SVGA_COTABLE_MAX_IDS) { + DRM_ERROR("Illegal COTable id. Type is %u. Id is %d\n", + (unsigned) vcotbl->type, id); + return -EINVAL; + } + + if (vcotbl->seen_entries < id) { + /* Trigger a call to create() on next validate */ + res->id = -1; + vcotbl->seen_entries = id; + } + + return 0; +} + +/** + * vmw_cotable_add_resource - add a view to the cotable's list of active views. + * + * @res: pointer struct vmw_resource representing the cotable. + * @head: pointer to the struct list_head member of the resource, dedicated + * to the cotable active resource list. + */ +void vmw_cotable_add_resource(struct vmw_resource *res, struct list_head *head) +{ + struct vmw_cotable *vcotbl = + container_of(res, struct vmw_cotable, res); + + list_add_tail(head, &vcotbl->resource_list); +} -- cgit v1.2.3