From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- drivers/usb/gadget/legacy/Kconfig | 532 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 532 insertions(+) create mode 100644 drivers/usb/gadget/legacy/Kconfig (limited to 'drivers/usb/gadget/legacy/Kconfig') diff --git a/drivers/usb/gadget/legacy/Kconfig b/drivers/usb/gadget/legacy/Kconfig new file mode 100644 index 000000000..0a7b382fb --- /dev/null +++ b/drivers/usb/gadget/legacy/Kconfig @@ -0,0 +1,532 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# USB Gadget support on a system involves +# (a) a peripheral controller, and +# (b) the gadget driver using it. +# +# NOTE: Gadget support ** DOES NOT ** depend on host-side CONFIG_USB !! +# +# - Host systems (like PCs) need CONFIG_USB (with "A" jacks). +# - Peripherals (like PDAs) need CONFIG_USB_GADGET (with "B" jacks). +# - Some systems have both kinds of controllers. +# +# With help from a special transceiver and a "Mini-AB" jack, systems with +# both kinds of controller can also support "USB On-the-Go" (CONFIG_USB_OTG). +# +# A Linux "Gadget Driver" talks to the USB Peripheral Controller +# driver through the abstract "gadget" API. Some other operating +# systems call these "client" drivers, of which "class drivers" +# are a subset (implementing a USB device class specification). +# A gadget driver implements one or more USB functions using +# the peripheral hardware. +# +# Gadget drivers are hardware-neutral, or "platform independent", +# except that they sometimes must understand quirks or limitations +# of the particular controllers they work with. For example, when +# a controller doesn't support alternate configurations or provide +# enough of the right types of endpoints, the gadget driver might +# not be able work with that controller, or might need to implement +# a less common variant of a device class protocol. +# +# The available choices each represent a single precomposed USB +# gadget configuration. In the device model, each option contains +# both the device instantiation as a child for a USB gadget +# controller, and the relevant drivers for each function declared +# by the device. + +menu "USB Gadget precomposed configurations" + +config USB_ZERO + tristate "Gadget Zero (DEVELOPMENT)" + select USB_LIBCOMPOSITE + select USB_F_SS_LB + help + Gadget Zero is a two-configuration device. It either sinks and + sources bulk data; or it loops back a configurable number of + transfers. It also implements control requests, for "chapter 9" + conformance. The driver needs only two bulk-capable endpoints, so + it can work on top of most device-side usb controllers. It's + useful for testing, and is also a working example showing how + USB "gadget drivers" can be written. + + Make this be the first driver you try using on top of any new + USB peripheral controller driver. Then you can use host-side + test software, like the "usbtest" driver, to put your hardware + and its driver through a basic set of functional tests. + + Gadget Zero also works with the host-side "usb-skeleton" driver, + and with many kinds of host-side test software. You may need + to tweak product and vendor IDs before host software knows about + this device, and arrange to select an appropriate configuration. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_zero". + +config USB_ZERO_HNPTEST + bool "HNP Test Device" + depends on USB_ZERO && USB_OTG + help + You can configure this device to enumerate using the device + identifiers of the USB-OTG test device. That means that when + this gadget connects to another OTG device, with this one using + the "B-Peripheral" role, that device will use HNP to let this + one serve as the USB host instead (in the "B-Host" role). + +config USB_AUDIO + tristate "Audio Gadget" + depends on SND + select USB_LIBCOMPOSITE + select SND_PCM + select USB_F_UAC1 if (GADGET_UAC1 && !GADGET_UAC1_LEGACY) + select USB_F_UAC1_LEGACY if (GADGET_UAC1 && GADGET_UAC1_LEGACY) + select USB_F_UAC2 if !GADGET_UAC1 + select USB_U_AUDIO if (USB_F_UAC2 || USB_F_UAC1) + help + This Gadget Audio driver is compatible with USB Audio Class + specification 2.0. It implements 1 AudioControl interface, + 1 AudioStreaming Interface each for USB-OUT and USB-IN. + Number of channels, sample rate and sample size can be + specified as module parameters. + This driver doesn't expect any real Audio codec to be present + on the device - the audio streams are simply sinked to and + sourced from a virtual ALSA sound card created. The user-space + application may choose to do whatever it wants with the data + received from the USB Host and choose to provide whatever it + wants as audio data to the USB Host. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_audio". + +config GADGET_UAC1 + bool "UAC 1.0" + depends on USB_AUDIO + help + If you instead want older USB Audio Class specification 1.0 support + with similar driver capabilities. + +config GADGET_UAC1_LEGACY + bool "UAC 1.0 (Legacy)" + depends on GADGET_UAC1 + help + If you instead want legacy UAC Spec-1.0 driver that also has audio + paths hardwired to the Audio codec chip on-board and doesn't work + without one. + +config USB_ETH + tristate "Ethernet Gadget (with CDC Ethernet support)" + depends on NET + select USB_LIBCOMPOSITE + select USB_U_ETHER + select USB_F_ECM + select USB_F_SUBSET + select CRC32 + help + This driver implements Ethernet style communication, in one of + several ways: + + - The "Communication Device Class" (CDC) Ethernet Control Model. + That protocol is often avoided with pure Ethernet adapters, in + favor of simpler vendor-specific hardware, but is widely + supported by firmware for smart network devices. + + - On hardware can't implement that protocol, a simple CDC subset + is used, placing fewer demands on USB. + + - CDC Ethernet Emulation Model (EEM) is a newer standard that has + a simpler interface that can be used by more USB hardware. + + RNDIS support is an additional option, more demanding than subset. + + Within the USB device, this gadget driver exposes a network device + "usbX", where X depends on what other networking devices you have. + Treat it like a two-node Ethernet link: host, and gadget. + + The Linux-USB host-side "usbnet" driver interoperates with this + driver, so that deep I/O queues can be supported. On 2.4 kernels, + use "CDCEther" instead, if you're using the CDC option. That CDC + mode should also interoperate with standard CDC Ethernet class + drivers on other host operating systems. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_ether". + +config USB_ETH_RNDIS + bool "RNDIS support" + depends on USB_ETH + select USB_LIBCOMPOSITE + select USB_F_RNDIS + default y + help + Microsoft Windows XP bundles the "Remote NDIS" (RNDIS) protocol, + and Microsoft provides redistributable binary RNDIS drivers for + older versions of Windows. + + If you say "y" here, the Ethernet gadget driver will try to provide + a second device configuration, supporting RNDIS to talk to such + Microsoft USB hosts. + + To make MS-Windows work with this, use Documentation/usb/linux.inf + as the "driver info file". For versions of MS-Windows older than + XP, you'll need to download drivers from Microsoft's website; a URL + is given in comments found in that info file. + +config USB_ETH_EEM + bool "Ethernet Emulation Model (EEM) support" + depends on USB_ETH + select USB_LIBCOMPOSITE + select USB_F_EEM + help + CDC EEM is a newer USB standard that is somewhat simpler than CDC ECM + and therefore can be supported by more hardware. Technically ECM and + EEM are designed for different applications. The ECM model extends + the network interface to the target (e.g. a USB cable modem), and the + EEM model is for mobile devices to communicate with hosts using + ethernet over USB. For Linux gadgets, however, the interface with + the host is the same (a usbX device), so the differences are minimal. + + If you say "y" here, the Ethernet gadget driver will use the EEM + protocol rather than ECM. If unsure, say "n". + +config USB_G_NCM + tristate "Network Control Model (NCM) support" + depends on NET + select USB_LIBCOMPOSITE + select USB_U_ETHER + select USB_F_NCM + select CRC32 + help + This driver implements USB CDC NCM subclass standard. NCM is + an advanced protocol for Ethernet encapsulation, allows grouping + of several ethernet frames into one USB transfer and different + alignment possibilities. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_ncm". + +config USB_GADGETFS + tristate "Gadget Filesystem" + help + This driver provides a filesystem based API that lets user mode + programs implement a single-configuration USB device, including + endpoint I/O and control requests that don't relate to enumeration. + All endpoints, transfer speeds, and transfer types supported by + the hardware are available, through read() and write() calls. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "gadgetfs". + +config USB_FUNCTIONFS + tristate "Function Filesystem" + select USB_LIBCOMPOSITE + select USB_F_FS + select USB_FUNCTIONFS_GENERIC if !(USB_FUNCTIONFS_ETH || USB_FUNCTIONFS_RNDIS) + help + The Function Filesystem (FunctionFS) lets one create USB + composite functions in user space in the same way GadgetFS + lets one create USB gadgets in user space. This allows creation + of composite gadgets such that some of the functions are + implemented in kernel space (for instance Ethernet, serial or + mass storage) and other are implemented in user space. + + If you say "y" or "m" here you will be able what kind of + configurations the gadget will provide. + + Say "y" to link the driver statically, or "m" to build + a dynamically linked module called "g_ffs". + +config USB_FUNCTIONFS_ETH + bool "Include configuration with CDC ECM (Ethernet)" + depends on USB_FUNCTIONFS && NET + select USB_U_ETHER + select USB_F_ECM + select USB_F_SUBSET + help + Include a configuration with CDC ECM function (Ethernet) and the + Function Filesystem. + +config USB_FUNCTIONFS_RNDIS + bool "Include configuration with RNDIS (Ethernet)" + depends on USB_FUNCTIONFS && NET + select USB_U_ETHER + select USB_F_RNDIS + help + Include a configuration with RNDIS function (Ethernet) and the Filesystem. + +config USB_FUNCTIONFS_GENERIC + bool "Include 'pure' configuration" + depends on USB_FUNCTIONFS + help + Include a configuration with the Function Filesystem alone with + no Ethernet interface. + +config USB_MASS_STORAGE + tristate "Mass Storage Gadget" + depends on BLOCK + select USB_LIBCOMPOSITE + select USB_F_MASS_STORAGE + help + The Mass Storage Gadget acts as a USB Mass Storage disk drive. + As its storage repository it can use a regular file or a block + device (in much the same way as the "loop" device driver), + specified as a module parameter or sysfs option. + + This driver is a replacement for now removed File-backed + Storage Gadget (g_file_storage). + + Say "y" to link the driver statically, or "m" to build + a dynamically linked module called "g_mass_storage". + +config USB_GADGET_TARGET + tristate "USB Gadget Target Fabric Module" + depends on TARGET_CORE + select USB_LIBCOMPOSITE + select USB_F_TCM + help + This fabric is an USB gadget. Two USB protocols are supported that is + BBB or BOT (Bulk Only Transport) and UAS (USB Attached SCSI). BOT is + advertised on alternative interface 0 (primary) and UAS is on + alternative interface 1. Both protocols can work on USB2.0 and USB3.0. + UAS utilizes the USB 3.0 feature called streams support. + +config USB_G_SERIAL + tristate "Serial Gadget (with CDC ACM and CDC OBEX support)" + depends on TTY + select USB_U_SERIAL + select USB_F_ACM + select USB_F_SERIAL + select USB_F_OBEX + select USB_LIBCOMPOSITE + help + The Serial Gadget talks to the Linux-USB generic serial driver. + This driver supports a CDC-ACM module option, which can be used + to interoperate with MS-Windows hosts or with the Linux-USB + "cdc-acm" driver. + + This driver also supports a CDC-OBEX option. You will need a + user space OBEX server talking to /dev/ttyGS*, since the kernel + itself doesn't implement the OBEX protocol. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_serial". + + For more information, see Documentation/usb/gadget_serial.rst + which includes instructions and a "driver info file" needed to + make MS-Windows work with CDC ACM. + +config USB_MIDI_GADGET + tristate "MIDI Gadget" + depends on SND + select USB_LIBCOMPOSITE + select SND_RAWMIDI + select USB_F_MIDI + help + The MIDI Gadget acts as a USB Audio device, with one MIDI + input and one MIDI output. These MIDI jacks appear as + a sound "card" in the ALSA sound system. Other MIDI + connections can then be made on the gadget system, using + ALSA's aconnect utility etc. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_midi". + +config USB_G_PRINTER + tristate "Printer Gadget" + select USB_LIBCOMPOSITE + select USB_F_PRINTER + help + The Printer Gadget channels data between the USB host and a + userspace program driving the print engine. The user space + program reads and writes the device file /dev/g_printer to + receive or send printer data. It can use ioctl calls to + the device file to get or set printer status. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_printer". + + For more information, see Documentation/usb/gadget_printer.rst + which includes sample code for accessing the device file. + +if TTY + +config USB_CDC_COMPOSITE + tristate "CDC Composite Device (Ethernet and ACM)" + depends on NET + select USB_LIBCOMPOSITE + select USB_U_SERIAL + select USB_U_ETHER + select USB_F_ACM + select USB_F_ECM + help + This driver provides two functions in one configuration: + a CDC Ethernet (ECM) link, and a CDC ACM (serial port) link. + + This driver requires four bulk and two interrupt endpoints, + plus the ability to handle altsettings. Not all peripheral + controllers are that capable. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module. + +config USB_G_NOKIA + tristate "Nokia composite gadget" + depends on PHONET + depends on BLOCK + select USB_LIBCOMPOSITE + select USB_U_SERIAL + select USB_U_ETHER + select USB_F_ACM + select USB_F_OBEX + select USB_F_PHONET + select USB_F_ECM + select USB_F_MASS_STORAGE + help + The Nokia composite gadget provides support for acm, obex + and phonet in only one composite gadget driver. + + It's only really useful for N900 hardware. If you're building + a kernel for N900, say Y or M here. If unsure, say N. + +config USB_G_ACM_MS + tristate "CDC Composite Device (ACM and mass storage)" + depends on BLOCK + select USB_LIBCOMPOSITE + select USB_U_SERIAL + select USB_F_ACM + select USB_F_MASS_STORAGE + help + This driver provides two functions in one configuration: + a mass storage, and a CDC ACM (serial port) link. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_acm_ms". + +config USB_G_MULTI + tristate "Multifunction Composite Gadget" + depends on BLOCK && NET + select USB_G_MULTI_CDC if !USB_G_MULTI_RNDIS + select USB_LIBCOMPOSITE + select USB_U_SERIAL + select USB_U_ETHER + select USB_F_ACM + select USB_F_MASS_STORAGE + help + The Multifunction Composite Gadget provides Ethernet (RNDIS + and/or CDC Ethernet), mass storage and ACM serial link + interfaces. + + You will be asked to choose which of the two configurations is + to be available in the gadget. At least one configuration must + be chosen to make the gadget usable. Selecting more than one + configuration will prevent Windows from automatically detecting + the gadget as a composite gadget, so an INF file will be needed to + use the gadget. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_multi". + +config USB_G_MULTI_RNDIS + bool "RNDIS + CDC Serial + Storage configuration" + depends on USB_G_MULTI + select USB_F_RNDIS + default y + help + This option enables a configuration with RNDIS, CDC Serial and + Mass Storage functions available in the Multifunction Composite + Gadget. This is the configuration dedicated for Windows since RNDIS + is Microsoft's protocol. + + If unsure, say "y". + +config USB_G_MULTI_CDC + bool "CDC Ethernet + CDC Serial + Storage configuration" + depends on USB_G_MULTI + select USB_F_ECM + help + This option enables a configuration with CDC Ethernet (ECM), CDC + Serial and Mass Storage functions available in the Multifunction + Composite Gadget. + + If unsure, say "y". + +endif # TTY + +config USB_G_HID + tristate "HID Gadget" + select USB_LIBCOMPOSITE + select USB_F_HID + help + The HID gadget driver provides generic emulation of USB + Human Interface Devices (HID). + + For more information, see Documentation/usb/gadget_hid.rst which + includes sample code for accessing the device files. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_hid". + +# Standalone / single function gadgets +config USB_G_DBGP + tristate "EHCI Debug Device Gadget" + depends on TTY + select USB_LIBCOMPOSITE + help + This gadget emulates an EHCI Debug device. This is useful when you want + to interact with an EHCI Debug Port. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_dbgp". + +if USB_G_DBGP +choice + prompt "EHCI Debug Device mode" + default USB_G_DBGP_SERIAL + +config USB_G_DBGP_PRINTK + depends on USB_G_DBGP + bool "printk" + help + Directly printk() received data. No interaction. + +config USB_G_DBGP_SERIAL + depends on USB_G_DBGP + select USB_U_SERIAL + bool "serial" + help + Userland can interact using /dev/ttyGSxxx. +endchoice +endif + +# put drivers that need isochronous transfer support (for audio +# or video class gadget drivers), or specific hardware, here. +config USB_G_WEBCAM + tristate "USB Webcam Gadget" + depends on VIDEO_DEV + select USB_LIBCOMPOSITE + select VIDEOBUF2_DMA_SG + select VIDEOBUF2_VMALLOC + select USB_F_UVC + help + The Webcam Gadget acts as a composite USB Audio and Video Class + device. It provides a userspace API to process UVC control requests + and stream video data to the host. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "g_webcam". + +config USB_RAW_GADGET + tristate "USB Raw Gadget" + help + USB Raw Gadget is a gadget driver that gives userspace low-level + control over the gadget's communication process. + + Like any other gadget driver, Raw Gadget implements USB devices via + the USB gadget API. Unlike most gadget drivers, Raw Gadget does not + implement any concrete USB functions itself but requires userspace + to do that. + + See Documentation/usb/raw-gadget.rst for details. + + Say "y" to link the driver statically, or "m" to build a + dynamically linked module called "raw_gadget". + +endmenu -- cgit v1.2.3