From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- fs/f2fs/compress.c | 2009 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2009 insertions(+) create mode 100644 fs/f2fs/compress.c (limited to 'fs/f2fs/compress.c') diff --git a/fs/f2fs/compress.c b/fs/f2fs/compress.c new file mode 100644 index 000000000..2532f369c --- /dev/null +++ b/fs/f2fs/compress.c @@ -0,0 +1,2009 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * f2fs compress support + * + * Copyright (c) 2019 Chao Yu + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "f2fs.h" +#include "node.h" +#include "segment.h" +#include + +static struct kmem_cache *cic_entry_slab; +static struct kmem_cache *dic_entry_slab; + +static void *page_array_alloc(struct inode *inode, int nr) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + unsigned int size = sizeof(struct page *) * nr; + + if (likely(size <= sbi->page_array_slab_size)) + return f2fs_kmem_cache_alloc(sbi->page_array_slab, + GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); + return f2fs_kzalloc(sbi, size, GFP_NOFS); +} + +static void page_array_free(struct inode *inode, void *pages, int nr) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + unsigned int size = sizeof(struct page *) * nr; + + if (!pages) + return; + + if (likely(size <= sbi->page_array_slab_size)) + kmem_cache_free(sbi->page_array_slab, pages); + else + kfree(pages); +} + +struct f2fs_compress_ops { + int (*init_compress_ctx)(struct compress_ctx *cc); + void (*destroy_compress_ctx)(struct compress_ctx *cc); + int (*compress_pages)(struct compress_ctx *cc); + int (*init_decompress_ctx)(struct decompress_io_ctx *dic); + void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); + int (*decompress_pages)(struct decompress_io_ctx *dic); +}; + +static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) +{ + return index & (cc->cluster_size - 1); +} + +static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) +{ + return index >> cc->log_cluster_size; +} + +static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) +{ + return cc->cluster_idx << cc->log_cluster_size; +} + +bool f2fs_is_compressed_page(struct page *page) +{ + if (!PagePrivate(page)) + return false; + if (!page_private(page)) + return false; + if (page_private_nonpointer(page)) + return false; + + f2fs_bug_on(F2FS_M_SB(page->mapping), + *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); + return true; +} + +static void f2fs_set_compressed_page(struct page *page, + struct inode *inode, pgoff_t index, void *data) +{ + attach_page_private(page, (void *)data); + + /* i_crypto_info and iv index */ + page->index = index; + page->mapping = inode->i_mapping; +} + +static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) +{ + int i; + + for (i = 0; i < len; i++) { + if (!cc->rpages[i]) + continue; + if (unlock) + unlock_page(cc->rpages[i]); + else + put_page(cc->rpages[i]); + } +} + +static void f2fs_put_rpages(struct compress_ctx *cc) +{ + f2fs_drop_rpages(cc, cc->cluster_size, false); +} + +static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) +{ + f2fs_drop_rpages(cc, len, true); +} + +static void f2fs_put_rpages_wbc(struct compress_ctx *cc, + struct writeback_control *wbc, bool redirty, int unlock) +{ + unsigned int i; + + for (i = 0; i < cc->cluster_size; i++) { + if (!cc->rpages[i]) + continue; + if (redirty) + redirty_page_for_writepage(wbc, cc->rpages[i]); + f2fs_put_page(cc->rpages[i], unlock); + } +} + +struct page *f2fs_compress_control_page(struct page *page) +{ + return ((struct compress_io_ctx *)page_private(page))->rpages[0]; +} + +int f2fs_init_compress_ctx(struct compress_ctx *cc) +{ + if (cc->rpages) + return 0; + + cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); + return cc->rpages ? 0 : -ENOMEM; +} + +void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) +{ + page_array_free(cc->inode, cc->rpages, cc->cluster_size); + cc->rpages = NULL; + cc->nr_rpages = 0; + cc->nr_cpages = 0; + cc->valid_nr_cpages = 0; + if (!reuse) + cc->cluster_idx = NULL_CLUSTER; +} + +void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) +{ + unsigned int cluster_ofs; + + if (!f2fs_cluster_can_merge_page(cc, page->index)) + f2fs_bug_on(F2FS_I_SB(cc->inode), 1); + + cluster_ofs = offset_in_cluster(cc, page->index); + cc->rpages[cluster_ofs] = page; + cc->nr_rpages++; + cc->cluster_idx = cluster_idx(cc, page->index); +} + +#ifdef CONFIG_F2FS_FS_LZO +static int lzo_init_compress_ctx(struct compress_ctx *cc) +{ + cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), + LZO1X_MEM_COMPRESS, GFP_NOFS); + if (!cc->private) + return -ENOMEM; + + cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); + return 0; +} + +static void lzo_destroy_compress_ctx(struct compress_ctx *cc) +{ + kvfree(cc->private); + cc->private = NULL; +} + +static int lzo_compress_pages(struct compress_ctx *cc) +{ + int ret; + + ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, + &cc->clen, cc->private); + if (ret != LZO_E_OK) { + printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", + KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); + return -EIO; + } + return 0; +} + +static int lzo_decompress_pages(struct decompress_io_ctx *dic) +{ + int ret; + + ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, + dic->rbuf, &dic->rlen); + if (ret != LZO_E_OK) { + printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", + KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); + return -EIO; + } + + if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { + printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " + "expected:%lu\n", KERN_ERR, + F2FS_I_SB(dic->inode)->sb->s_id, + dic->rlen, + PAGE_SIZE << dic->log_cluster_size); + return -EIO; + } + return 0; +} + +static const struct f2fs_compress_ops f2fs_lzo_ops = { + .init_compress_ctx = lzo_init_compress_ctx, + .destroy_compress_ctx = lzo_destroy_compress_ctx, + .compress_pages = lzo_compress_pages, + .decompress_pages = lzo_decompress_pages, +}; +#endif + +#ifdef CONFIG_F2FS_FS_LZ4 +static int lz4_init_compress_ctx(struct compress_ctx *cc) +{ + unsigned int size = LZ4_MEM_COMPRESS; + +#ifdef CONFIG_F2FS_FS_LZ4HC + if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET) + size = LZ4HC_MEM_COMPRESS; +#endif + + cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); + if (!cc->private) + return -ENOMEM; + + /* + * we do not change cc->clen to LZ4_compressBound(inputsize) to + * adapt worst compress case, because lz4 compressor can handle + * output budget properly. + */ + cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; + return 0; +} + +static void lz4_destroy_compress_ctx(struct compress_ctx *cc) +{ + kvfree(cc->private); + cc->private = NULL; +} + +#ifdef CONFIG_F2FS_FS_LZ4HC +static int lz4hc_compress_pages(struct compress_ctx *cc) +{ + unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> + COMPRESS_LEVEL_OFFSET; + int len; + + if (level) + len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, + cc->clen, level, cc->private); + else + len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, + cc->clen, cc->private); + if (!len) + return -EAGAIN; + + cc->clen = len; + return 0; +} +#endif + +static int lz4_compress_pages(struct compress_ctx *cc) +{ + int len; + +#ifdef CONFIG_F2FS_FS_LZ4HC + return lz4hc_compress_pages(cc); +#endif + len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, + cc->clen, cc->private); + if (!len) + return -EAGAIN; + + cc->clen = len; + return 0; +} + +static int lz4_decompress_pages(struct decompress_io_ctx *dic) +{ + int ret; + + ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, + dic->clen, dic->rlen); + if (ret < 0) { + printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", + KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); + return -EIO; + } + + if (ret != PAGE_SIZE << dic->log_cluster_size) { + printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, " + "expected:%lu\n", KERN_ERR, + F2FS_I_SB(dic->inode)->sb->s_id, ret, + PAGE_SIZE << dic->log_cluster_size); + return -EIO; + } + return 0; +} + +static const struct f2fs_compress_ops f2fs_lz4_ops = { + .init_compress_ctx = lz4_init_compress_ctx, + .destroy_compress_ctx = lz4_destroy_compress_ctx, + .compress_pages = lz4_compress_pages, + .decompress_pages = lz4_decompress_pages, +}; +#endif + +#ifdef CONFIG_F2FS_FS_ZSTD +#define F2FS_ZSTD_DEFAULT_CLEVEL 1 + +static int zstd_init_compress_ctx(struct compress_ctx *cc) +{ + zstd_parameters params; + zstd_cstream *stream; + void *workspace; + unsigned int workspace_size; + unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> + COMPRESS_LEVEL_OFFSET; + + if (!level) + level = F2FS_ZSTD_DEFAULT_CLEVEL; + + params = zstd_get_params(level, cc->rlen); + workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); + + workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), + workspace_size, GFP_NOFS); + if (!workspace) + return -ENOMEM; + + stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); + if (!stream) { + printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n", + KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, + __func__); + kvfree(workspace); + return -EIO; + } + + cc->private = workspace; + cc->private2 = stream; + + cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; + return 0; +} + +static void zstd_destroy_compress_ctx(struct compress_ctx *cc) +{ + kvfree(cc->private); + cc->private = NULL; + cc->private2 = NULL; +} + +static int zstd_compress_pages(struct compress_ctx *cc) +{ + zstd_cstream *stream = cc->private2; + zstd_in_buffer inbuf; + zstd_out_buffer outbuf; + int src_size = cc->rlen; + int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; + int ret; + + inbuf.pos = 0; + inbuf.src = cc->rbuf; + inbuf.size = src_size; + + outbuf.pos = 0; + outbuf.dst = cc->cbuf->cdata; + outbuf.size = dst_size; + + ret = zstd_compress_stream(stream, &outbuf, &inbuf); + if (zstd_is_error(ret)) { + printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n", + KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, + __func__, zstd_get_error_code(ret)); + return -EIO; + } + + ret = zstd_end_stream(stream, &outbuf); + if (zstd_is_error(ret)) { + printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n", + KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, + __func__, zstd_get_error_code(ret)); + return -EIO; + } + + /* + * there is compressed data remained in intermediate buffer due to + * no more space in cbuf.cdata + */ + if (ret) + return -EAGAIN; + + cc->clen = outbuf.pos; + return 0; +} + +static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) +{ + zstd_dstream *stream; + void *workspace; + unsigned int workspace_size; + unsigned int max_window_size = + MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); + + workspace_size = zstd_dstream_workspace_bound(max_window_size); + + workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), + workspace_size, GFP_NOFS); + if (!workspace) + return -ENOMEM; + + stream = zstd_init_dstream(max_window_size, workspace, workspace_size); + if (!stream) { + printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n", + KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, + __func__); + kvfree(workspace); + return -EIO; + } + + dic->private = workspace; + dic->private2 = stream; + + return 0; +} + +static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) +{ + kvfree(dic->private); + dic->private = NULL; + dic->private2 = NULL; +} + +static int zstd_decompress_pages(struct decompress_io_ctx *dic) +{ + zstd_dstream *stream = dic->private2; + zstd_in_buffer inbuf; + zstd_out_buffer outbuf; + int ret; + + inbuf.pos = 0; + inbuf.src = dic->cbuf->cdata; + inbuf.size = dic->clen; + + outbuf.pos = 0; + outbuf.dst = dic->rbuf; + outbuf.size = dic->rlen; + + ret = zstd_decompress_stream(stream, &outbuf, &inbuf); + if (zstd_is_error(ret)) { + printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n", + KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, + __func__, zstd_get_error_code(ret)); + return -EIO; + } + + if (dic->rlen != outbuf.pos) { + printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " + "expected:%lu\n", KERN_ERR, + F2FS_I_SB(dic->inode)->sb->s_id, + __func__, dic->rlen, + PAGE_SIZE << dic->log_cluster_size); + return -EIO; + } + + return 0; +} + +static const struct f2fs_compress_ops f2fs_zstd_ops = { + .init_compress_ctx = zstd_init_compress_ctx, + .destroy_compress_ctx = zstd_destroy_compress_ctx, + .compress_pages = zstd_compress_pages, + .init_decompress_ctx = zstd_init_decompress_ctx, + .destroy_decompress_ctx = zstd_destroy_decompress_ctx, + .decompress_pages = zstd_decompress_pages, +}; +#endif + +#ifdef CONFIG_F2FS_FS_LZO +#ifdef CONFIG_F2FS_FS_LZORLE +static int lzorle_compress_pages(struct compress_ctx *cc) +{ + int ret; + + ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, + &cc->clen, cc->private); + if (ret != LZO_E_OK) { + printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", + KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); + return -EIO; + } + return 0; +} + +static const struct f2fs_compress_ops f2fs_lzorle_ops = { + .init_compress_ctx = lzo_init_compress_ctx, + .destroy_compress_ctx = lzo_destroy_compress_ctx, + .compress_pages = lzorle_compress_pages, + .decompress_pages = lzo_decompress_pages, +}; +#endif +#endif + +static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { +#ifdef CONFIG_F2FS_FS_LZO + &f2fs_lzo_ops, +#else + NULL, +#endif +#ifdef CONFIG_F2FS_FS_LZ4 + &f2fs_lz4_ops, +#else + NULL, +#endif +#ifdef CONFIG_F2FS_FS_ZSTD + &f2fs_zstd_ops, +#else + NULL, +#endif +#if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) + &f2fs_lzorle_ops, +#else + NULL, +#endif +}; + +bool f2fs_is_compress_backend_ready(struct inode *inode) +{ + if (!f2fs_compressed_file(inode)) + return true; + return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; +} + +static mempool_t *compress_page_pool; +static int num_compress_pages = 512; +module_param(num_compress_pages, uint, 0444); +MODULE_PARM_DESC(num_compress_pages, + "Number of intermediate compress pages to preallocate"); + +int f2fs_init_compress_mempool(void) +{ + compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); + return compress_page_pool ? 0 : -ENOMEM; +} + +void f2fs_destroy_compress_mempool(void) +{ + mempool_destroy(compress_page_pool); +} + +static struct page *f2fs_compress_alloc_page(void) +{ + struct page *page; + + page = mempool_alloc(compress_page_pool, GFP_NOFS); + lock_page(page); + + return page; +} + +static void f2fs_compress_free_page(struct page *page) +{ + if (!page) + return; + detach_page_private(page); + page->mapping = NULL; + unlock_page(page); + mempool_free(page, compress_page_pool); +} + +#define MAX_VMAP_RETRIES 3 + +static void *f2fs_vmap(struct page **pages, unsigned int count) +{ + int i; + void *buf = NULL; + + for (i = 0; i < MAX_VMAP_RETRIES; i++) { + buf = vm_map_ram(pages, count, -1); + if (buf) + break; + vm_unmap_aliases(); + } + return buf; +} + +static int f2fs_compress_pages(struct compress_ctx *cc) +{ + struct f2fs_inode_info *fi = F2FS_I(cc->inode); + const struct f2fs_compress_ops *cops = + f2fs_cops[fi->i_compress_algorithm]; + unsigned int max_len, new_nr_cpages; + u32 chksum = 0; + int i, ret; + + trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, + cc->cluster_size, fi->i_compress_algorithm); + + if (cops->init_compress_ctx) { + ret = cops->init_compress_ctx(cc); + if (ret) + goto out; + } + + max_len = COMPRESS_HEADER_SIZE + cc->clen; + cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); + cc->valid_nr_cpages = cc->nr_cpages; + + cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); + if (!cc->cpages) { + ret = -ENOMEM; + goto destroy_compress_ctx; + } + + for (i = 0; i < cc->nr_cpages; i++) { + cc->cpages[i] = f2fs_compress_alloc_page(); + if (!cc->cpages[i]) { + ret = -ENOMEM; + goto out_free_cpages; + } + } + + cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); + if (!cc->rbuf) { + ret = -ENOMEM; + goto out_free_cpages; + } + + cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); + if (!cc->cbuf) { + ret = -ENOMEM; + goto out_vunmap_rbuf; + } + + ret = cops->compress_pages(cc); + if (ret) + goto out_vunmap_cbuf; + + max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; + + if (cc->clen > max_len) { + ret = -EAGAIN; + goto out_vunmap_cbuf; + } + + cc->cbuf->clen = cpu_to_le32(cc->clen); + + if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM) + chksum = f2fs_crc32(F2FS_I_SB(cc->inode), + cc->cbuf->cdata, cc->clen); + cc->cbuf->chksum = cpu_to_le32(chksum); + + for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) + cc->cbuf->reserved[i] = cpu_to_le32(0); + + new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); + + /* zero out any unused part of the last page */ + memset(&cc->cbuf->cdata[cc->clen], 0, + (new_nr_cpages * PAGE_SIZE) - + (cc->clen + COMPRESS_HEADER_SIZE)); + + vm_unmap_ram(cc->cbuf, cc->nr_cpages); + vm_unmap_ram(cc->rbuf, cc->cluster_size); + + for (i = 0; i < cc->nr_cpages; i++) { + if (i < new_nr_cpages) + continue; + f2fs_compress_free_page(cc->cpages[i]); + cc->cpages[i] = NULL; + } + + if (cops->destroy_compress_ctx) + cops->destroy_compress_ctx(cc); + + cc->valid_nr_cpages = new_nr_cpages; + + trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, + cc->clen, ret); + return 0; + +out_vunmap_cbuf: + vm_unmap_ram(cc->cbuf, cc->nr_cpages); +out_vunmap_rbuf: + vm_unmap_ram(cc->rbuf, cc->cluster_size); +out_free_cpages: + for (i = 0; i < cc->nr_cpages; i++) { + if (cc->cpages[i]) + f2fs_compress_free_page(cc->cpages[i]); + } + page_array_free(cc->inode, cc->cpages, cc->nr_cpages); + cc->cpages = NULL; +destroy_compress_ctx: + if (cops->destroy_compress_ctx) + cops->destroy_compress_ctx(cc); +out: + trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, + cc->clen, ret); + return ret; +} + +static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, + bool pre_alloc); +static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, + bool bypass_destroy_callback, bool pre_alloc); + +void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); + struct f2fs_inode_info *fi = F2FS_I(dic->inode); + const struct f2fs_compress_ops *cops = + f2fs_cops[fi->i_compress_algorithm]; + bool bypass_callback = false; + int ret; + + trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, + dic->cluster_size, fi->i_compress_algorithm); + + if (dic->failed) { + ret = -EIO; + goto out_end_io; + } + + ret = f2fs_prepare_decomp_mem(dic, false); + if (ret) { + bypass_callback = true; + goto out_release; + } + + dic->clen = le32_to_cpu(dic->cbuf->clen); + dic->rlen = PAGE_SIZE << dic->log_cluster_size; + + if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { + ret = -EFSCORRUPTED; + f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); + goto out_release; + } + + ret = cops->decompress_pages(dic); + + if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) { + u32 provided = le32_to_cpu(dic->cbuf->chksum); + u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); + + if (provided != calculated) { + if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { + set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); + printk_ratelimited( + "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", + KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, + provided, calculated); + } + set_sbi_flag(sbi, SBI_NEED_FSCK); + } + } + +out_release: + f2fs_release_decomp_mem(dic, bypass_callback, false); + +out_end_io: + trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, + dic->clen, ret); + f2fs_decompress_end_io(dic, ret, in_task); +} + +/* + * This is called when a page of a compressed cluster has been read from disk + * (or failed to be read from disk). It checks whether this page was the last + * page being waited on in the cluster, and if so, it decompresses the cluster + * (or in the case of a failure, cleans up without actually decompressing). + */ +void f2fs_end_read_compressed_page(struct page *page, bool failed, + block_t blkaddr, bool in_task) +{ + struct decompress_io_ctx *dic = + (struct decompress_io_ctx *)page_private(page); + struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); + + dec_page_count(sbi, F2FS_RD_DATA); + + if (failed) + WRITE_ONCE(dic->failed, true); + else if (blkaddr && in_task) + f2fs_cache_compressed_page(sbi, page, + dic->inode->i_ino, blkaddr); + + if (atomic_dec_and_test(&dic->remaining_pages)) + f2fs_decompress_cluster(dic, in_task); +} + +static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) +{ + if (cc->cluster_idx == NULL_CLUSTER) + return true; + return cc->cluster_idx == cluster_idx(cc, index); +} + +bool f2fs_cluster_is_empty(struct compress_ctx *cc) +{ + return cc->nr_rpages == 0; +} + +static bool f2fs_cluster_is_full(struct compress_ctx *cc) +{ + return cc->cluster_size == cc->nr_rpages; +} + +bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) +{ + if (f2fs_cluster_is_empty(cc)) + return true; + return is_page_in_cluster(cc, index); +} + +bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, + int index, int nr_pages, bool uptodate) +{ + unsigned long pgidx = pages[index]->index; + int i = uptodate ? 0 : 1; + + /* + * when uptodate set to true, try to check all pages in cluster is + * uptodate or not. + */ + if (uptodate && (pgidx % cc->cluster_size)) + return false; + + if (nr_pages - index < cc->cluster_size) + return false; + + for (; i < cc->cluster_size; i++) { + if (pages[index + i]->index != pgidx + i) + return false; + if (uptodate && !PageUptodate(pages[index + i])) + return false; + } + + return true; +} + +static bool cluster_has_invalid_data(struct compress_ctx *cc) +{ + loff_t i_size = i_size_read(cc->inode); + unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); + int i; + + for (i = 0; i < cc->cluster_size; i++) { + struct page *page = cc->rpages[i]; + + f2fs_bug_on(F2FS_I_SB(cc->inode), !page); + + /* beyond EOF */ + if (page->index >= nr_pages) + return true; + } + return false; +} + +bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); + unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; + bool compressed = dn->data_blkaddr == COMPRESS_ADDR; + int cluster_end = 0; + int i; + char *reason = ""; + + if (!compressed) + return false; + + /* [..., COMPR_ADDR, ...] */ + if (dn->ofs_in_node % cluster_size) { + reason = "[*|C|*|*]"; + goto out; + } + + for (i = 1; i < cluster_size; i++) { + block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, + dn->ofs_in_node + i); + + /* [COMPR_ADDR, ..., COMPR_ADDR] */ + if (blkaddr == COMPRESS_ADDR) { + reason = "[C|*|C|*]"; + goto out; + } + if (!__is_valid_data_blkaddr(blkaddr)) { + if (!cluster_end) + cluster_end = i; + continue; + } + /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ + if (cluster_end) { + reason = "[C|N|N|V]"; + goto out; + } + } + return false; +out: + f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", + dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); + set_sbi_flag(sbi, SBI_NEED_FSCK); + return true; +} + +static int __f2fs_cluster_blocks(struct inode *inode, + unsigned int cluster_idx, bool compr) +{ + struct dnode_of_data dn; + unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; + unsigned int start_idx = cluster_idx << + F2FS_I(inode)->i_log_cluster_size; + int ret; + + set_new_dnode(&dn, inode, NULL, NULL, 0); + ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); + if (ret) { + if (ret == -ENOENT) + ret = 0; + goto fail; + } + + if (f2fs_sanity_check_cluster(&dn)) { + ret = -EFSCORRUPTED; + f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER); + goto fail; + } + + if (dn.data_blkaddr == COMPRESS_ADDR) { + int i; + + ret = 1; + for (i = 1; i < cluster_size; i++) { + block_t blkaddr; + + blkaddr = data_blkaddr(dn.inode, + dn.node_page, dn.ofs_in_node + i); + if (compr) { + if (__is_valid_data_blkaddr(blkaddr)) + ret++; + } else { + if (blkaddr != NULL_ADDR) + ret++; + } + } + + f2fs_bug_on(F2FS_I_SB(inode), + !compr && ret != cluster_size && + !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); + } +fail: + f2fs_put_dnode(&dn); + return ret; +} + +/* return # of compressed blocks in compressed cluster */ +static int f2fs_compressed_blocks(struct compress_ctx *cc) +{ + return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); +} + +/* return # of valid blocks in compressed cluster */ +int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) +{ + return __f2fs_cluster_blocks(inode, + index >> F2FS_I(inode)->i_log_cluster_size, + false); +} + +static bool cluster_may_compress(struct compress_ctx *cc) +{ + if (!f2fs_need_compress_data(cc->inode)) + return false; + if (f2fs_is_atomic_file(cc->inode)) + return false; + if (!f2fs_cluster_is_full(cc)) + return false; + if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) + return false; + return !cluster_has_invalid_data(cc); +} + +static void set_cluster_writeback(struct compress_ctx *cc) +{ + int i; + + for (i = 0; i < cc->cluster_size; i++) { + if (cc->rpages[i]) + set_page_writeback(cc->rpages[i]); + } +} + +static void set_cluster_dirty(struct compress_ctx *cc) +{ + int i; + + for (i = 0; i < cc->cluster_size; i++) + if (cc->rpages[i]) + set_page_dirty(cc->rpages[i]); +} + +static int prepare_compress_overwrite(struct compress_ctx *cc, + struct page **pagep, pgoff_t index, void **fsdata) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); + struct address_space *mapping = cc->inode->i_mapping; + struct page *page; + sector_t last_block_in_bio; + unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; + pgoff_t start_idx = start_idx_of_cluster(cc); + int i, ret; + +retry: + ret = f2fs_is_compressed_cluster(cc->inode, start_idx); + if (ret <= 0) + return ret; + + ret = f2fs_init_compress_ctx(cc); + if (ret) + return ret; + + /* keep page reference to avoid page reclaim */ + for (i = 0; i < cc->cluster_size; i++) { + page = f2fs_pagecache_get_page(mapping, start_idx + i, + fgp_flag, GFP_NOFS); + if (!page) { + ret = -ENOMEM; + goto unlock_pages; + } + + if (PageUptodate(page)) + f2fs_put_page(page, 1); + else + f2fs_compress_ctx_add_page(cc, page); + } + + if (!f2fs_cluster_is_empty(cc)) { + struct bio *bio = NULL; + + ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, + &last_block_in_bio, false, true); + f2fs_put_rpages(cc); + f2fs_destroy_compress_ctx(cc, true); + if (ret) + goto out; + if (bio) + f2fs_submit_bio(sbi, bio, DATA); + + ret = f2fs_init_compress_ctx(cc); + if (ret) + goto out; + } + + for (i = 0; i < cc->cluster_size; i++) { + f2fs_bug_on(sbi, cc->rpages[i]); + + page = find_lock_page(mapping, start_idx + i); + if (!page) { + /* page can be truncated */ + goto release_and_retry; + } + + f2fs_wait_on_page_writeback(page, DATA, true, true); + f2fs_compress_ctx_add_page(cc, page); + + if (!PageUptodate(page)) { +release_and_retry: + f2fs_put_rpages(cc); + f2fs_unlock_rpages(cc, i + 1); + f2fs_destroy_compress_ctx(cc, true); + goto retry; + } + } + + if (likely(!ret)) { + *fsdata = cc->rpages; + *pagep = cc->rpages[offset_in_cluster(cc, index)]; + return cc->cluster_size; + } + +unlock_pages: + f2fs_put_rpages(cc); + f2fs_unlock_rpages(cc, i); + f2fs_destroy_compress_ctx(cc, true); +out: + return ret; +} + +int f2fs_prepare_compress_overwrite(struct inode *inode, + struct page **pagep, pgoff_t index, void **fsdata) +{ + struct compress_ctx cc = { + .inode = inode, + .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, + .cluster_size = F2FS_I(inode)->i_cluster_size, + .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, + .rpages = NULL, + .nr_rpages = 0, + }; + + return prepare_compress_overwrite(&cc, pagep, index, fsdata); +} + +bool f2fs_compress_write_end(struct inode *inode, void *fsdata, + pgoff_t index, unsigned copied) + +{ + struct compress_ctx cc = { + .inode = inode, + .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, + .cluster_size = F2FS_I(inode)->i_cluster_size, + .rpages = fsdata, + }; + bool first_index = (index == cc.rpages[0]->index); + + if (copied) + set_cluster_dirty(&cc); + + f2fs_put_rpages_wbc(&cc, NULL, false, 1); + f2fs_destroy_compress_ctx(&cc, false); + + return first_index; +} + +int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) +{ + void *fsdata = NULL; + struct page *pagep; + int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; + pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << + log_cluster_size; + int err; + + err = f2fs_is_compressed_cluster(inode, start_idx); + if (err < 0) + return err; + + /* truncate normal cluster */ + if (!err) + return f2fs_do_truncate_blocks(inode, from, lock); + + /* truncate compressed cluster */ + err = f2fs_prepare_compress_overwrite(inode, &pagep, + start_idx, &fsdata); + + /* should not be a normal cluster */ + f2fs_bug_on(F2FS_I_SB(inode), err == 0); + + if (err <= 0) + return err; + + if (err > 0) { + struct page **rpages = fsdata; + int cluster_size = F2FS_I(inode)->i_cluster_size; + int i; + + for (i = cluster_size - 1; i >= 0; i--) { + loff_t start = rpages[i]->index << PAGE_SHIFT; + + if (from <= start) { + zero_user_segment(rpages[i], 0, PAGE_SIZE); + } else { + zero_user_segment(rpages[i], from - start, + PAGE_SIZE); + break; + } + } + + f2fs_compress_write_end(inode, fsdata, start_idx, true); + } + return 0; +} + +static int f2fs_write_compressed_pages(struct compress_ctx *cc, + int *submitted, + struct writeback_control *wbc, + enum iostat_type io_type) +{ + struct inode *inode = cc->inode; + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + struct f2fs_inode_info *fi = F2FS_I(inode); + struct f2fs_io_info fio = { + .sbi = sbi, + .ino = cc->inode->i_ino, + .type = DATA, + .op = REQ_OP_WRITE, + .op_flags = wbc_to_write_flags(wbc), + .old_blkaddr = NEW_ADDR, + .page = NULL, + .encrypted_page = NULL, + .compressed_page = NULL, + .submitted = false, + .io_type = io_type, + .io_wbc = wbc, + .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), + }; + struct dnode_of_data dn; + struct node_info ni; + struct compress_io_ctx *cic; + pgoff_t start_idx = start_idx_of_cluster(cc); + unsigned int last_index = cc->cluster_size - 1; + loff_t psize; + int i, err; + + /* we should bypass data pages to proceed the kworkder jobs */ + if (unlikely(f2fs_cp_error(sbi))) { + mapping_set_error(cc->rpages[0]->mapping, -EIO); + goto out_free; + } + + if (IS_NOQUOTA(inode)) { + /* + * We need to wait for node_write to avoid block allocation during + * checkpoint. This can only happen to quota writes which can cause + * the below discard race condition. + */ + f2fs_down_read(&sbi->node_write); + } else if (!f2fs_trylock_op(sbi)) { + goto out_free; + } + + set_new_dnode(&dn, cc->inode, NULL, NULL, 0); + + err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); + if (err) + goto out_unlock_op; + + for (i = 0; i < cc->cluster_size; i++) { + if (data_blkaddr(dn.inode, dn.node_page, + dn.ofs_in_node + i) == NULL_ADDR) + goto out_put_dnode; + } + + psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; + + err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); + if (err) + goto out_put_dnode; + + fio.version = ni.version; + + cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); + if (!cic) + goto out_put_dnode; + + cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; + cic->inode = inode; + atomic_set(&cic->pending_pages, cc->valid_nr_cpages); + cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); + if (!cic->rpages) + goto out_put_cic; + + cic->nr_rpages = cc->cluster_size; + + for (i = 0; i < cc->valid_nr_cpages; i++) { + f2fs_set_compressed_page(cc->cpages[i], inode, + cc->rpages[i + 1]->index, cic); + fio.compressed_page = cc->cpages[i]; + + fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, + dn.ofs_in_node + i + 1); + + /* wait for GCed page writeback via META_MAPPING */ + f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); + + if (fio.encrypted) { + fio.page = cc->rpages[i + 1]; + err = f2fs_encrypt_one_page(&fio); + if (err) + goto out_destroy_crypt; + cc->cpages[i] = fio.encrypted_page; + } + } + + set_cluster_writeback(cc); + + for (i = 0; i < cc->cluster_size; i++) + cic->rpages[i] = cc->rpages[i]; + + for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { + block_t blkaddr; + + blkaddr = f2fs_data_blkaddr(&dn); + fio.page = cc->rpages[i]; + fio.old_blkaddr = blkaddr; + + /* cluster header */ + if (i == 0) { + if (blkaddr == COMPRESS_ADDR) + fio.compr_blocks++; + if (__is_valid_data_blkaddr(blkaddr)) + f2fs_invalidate_blocks(sbi, blkaddr); + f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); + goto unlock_continue; + } + + if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) + fio.compr_blocks++; + + if (i > cc->valid_nr_cpages) { + if (__is_valid_data_blkaddr(blkaddr)) { + f2fs_invalidate_blocks(sbi, blkaddr); + f2fs_update_data_blkaddr(&dn, NEW_ADDR); + } + goto unlock_continue; + } + + f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); + + if (fio.encrypted) + fio.encrypted_page = cc->cpages[i - 1]; + else + fio.compressed_page = cc->cpages[i - 1]; + + cc->cpages[i - 1] = NULL; + f2fs_outplace_write_data(&dn, &fio); + (*submitted)++; +unlock_continue: + inode_dec_dirty_pages(cc->inode); + unlock_page(fio.page); + } + + if (fio.compr_blocks) + f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); + f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); + add_compr_block_stat(inode, cc->valid_nr_cpages); + + set_inode_flag(cc->inode, FI_APPEND_WRITE); + if (cc->cluster_idx == 0) + set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); + + f2fs_put_dnode(&dn); + if (IS_NOQUOTA(inode)) + f2fs_up_read(&sbi->node_write); + else + f2fs_unlock_op(sbi); + + spin_lock(&fi->i_size_lock); + if (fi->last_disk_size < psize) + fi->last_disk_size = psize; + spin_unlock(&fi->i_size_lock); + + f2fs_put_rpages(cc); + page_array_free(cc->inode, cc->cpages, cc->nr_cpages); + cc->cpages = NULL; + f2fs_destroy_compress_ctx(cc, false); + return 0; + +out_destroy_crypt: + page_array_free(cc->inode, cic->rpages, cc->cluster_size); + + for (--i; i >= 0; i--) + fscrypt_finalize_bounce_page(&cc->cpages[i]); +out_put_cic: + kmem_cache_free(cic_entry_slab, cic); +out_put_dnode: + f2fs_put_dnode(&dn); +out_unlock_op: + if (IS_NOQUOTA(inode)) + f2fs_up_read(&sbi->node_write); + else + f2fs_unlock_op(sbi); +out_free: + for (i = 0; i < cc->valid_nr_cpages; i++) { + f2fs_compress_free_page(cc->cpages[i]); + cc->cpages[i] = NULL; + } + page_array_free(cc->inode, cc->cpages, cc->nr_cpages); + cc->cpages = NULL; + return -EAGAIN; +} + +void f2fs_compress_write_end_io(struct bio *bio, struct page *page) +{ + struct f2fs_sb_info *sbi = bio->bi_private; + struct compress_io_ctx *cic = + (struct compress_io_ctx *)page_private(page); + int i; + + if (unlikely(bio->bi_status)) + mapping_set_error(cic->inode->i_mapping, -EIO); + + f2fs_compress_free_page(page); + + dec_page_count(sbi, F2FS_WB_DATA); + + if (atomic_dec_return(&cic->pending_pages)) + return; + + for (i = 0; i < cic->nr_rpages; i++) { + WARN_ON(!cic->rpages[i]); + clear_page_private_gcing(cic->rpages[i]); + end_page_writeback(cic->rpages[i]); + } + + page_array_free(cic->inode, cic->rpages, cic->nr_rpages); + kmem_cache_free(cic_entry_slab, cic); +} + +static int f2fs_write_raw_pages(struct compress_ctx *cc, + int *submitted, + struct writeback_control *wbc, + enum iostat_type io_type) +{ + struct address_space *mapping = cc->inode->i_mapping; + int _submitted, compr_blocks, ret, i; + + compr_blocks = f2fs_compressed_blocks(cc); + + for (i = 0; i < cc->cluster_size; i++) { + if (!cc->rpages[i]) + continue; + + redirty_page_for_writepage(wbc, cc->rpages[i]); + unlock_page(cc->rpages[i]); + } + + if (compr_blocks < 0) + return compr_blocks; + + for (i = 0; i < cc->cluster_size; i++) { + if (!cc->rpages[i]) + continue; +retry_write: + lock_page(cc->rpages[i]); + + if (cc->rpages[i]->mapping != mapping) { +continue_unlock: + unlock_page(cc->rpages[i]); + continue; + } + + if (!PageDirty(cc->rpages[i])) + goto continue_unlock; + + if (!clear_page_dirty_for_io(cc->rpages[i])) + goto continue_unlock; + + ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, + NULL, NULL, wbc, io_type, + compr_blocks, false); + if (ret) { + if (ret == AOP_WRITEPAGE_ACTIVATE) { + unlock_page(cc->rpages[i]); + ret = 0; + } else if (ret == -EAGAIN) { + /* + * for quota file, just redirty left pages to + * avoid deadlock caused by cluster update race + * from foreground operation. + */ + if (IS_NOQUOTA(cc->inode)) + return 0; + ret = 0; + f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); + goto retry_write; + } + return ret; + } + + *submitted += _submitted; + } + + f2fs_balance_fs(F2FS_M_SB(mapping), true); + + return 0; +} + +int f2fs_write_multi_pages(struct compress_ctx *cc, + int *submitted, + struct writeback_control *wbc, + enum iostat_type io_type) +{ + int err; + + *submitted = 0; + if (cluster_may_compress(cc)) { + err = f2fs_compress_pages(cc); + if (err == -EAGAIN) { + add_compr_block_stat(cc->inode, cc->cluster_size); + goto write; + } else if (err) { + f2fs_put_rpages_wbc(cc, wbc, true, 1); + goto destroy_out; + } + + err = f2fs_write_compressed_pages(cc, submitted, + wbc, io_type); + if (!err) + return 0; + f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); + } +write: + f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); + + err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); + f2fs_put_rpages_wbc(cc, wbc, false, 0); +destroy_out: + f2fs_destroy_compress_ctx(cc, false); + return err; +} + +static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, + bool pre_alloc) +{ + return pre_alloc ^ f2fs_low_mem_mode(sbi); +} + +static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, + bool pre_alloc) +{ + const struct f2fs_compress_ops *cops = + f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; + int i; + + if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) + return 0; + + dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); + if (!dic->tpages) + return -ENOMEM; + + for (i = 0; i < dic->cluster_size; i++) { + if (dic->rpages[i]) { + dic->tpages[i] = dic->rpages[i]; + continue; + } + + dic->tpages[i] = f2fs_compress_alloc_page(); + if (!dic->tpages[i]) + return -ENOMEM; + } + + dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); + if (!dic->rbuf) + return -ENOMEM; + + dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); + if (!dic->cbuf) + return -ENOMEM; + + if (cops->init_decompress_ctx) + return cops->init_decompress_ctx(dic); + + return 0; +} + +static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, + bool bypass_destroy_callback, bool pre_alloc) +{ + const struct f2fs_compress_ops *cops = + f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; + + if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) + return; + + if (!bypass_destroy_callback && cops->destroy_decompress_ctx) + cops->destroy_decompress_ctx(dic); + + if (dic->cbuf) + vm_unmap_ram(dic->cbuf, dic->nr_cpages); + + if (dic->rbuf) + vm_unmap_ram(dic->rbuf, dic->cluster_size); +} + +static void f2fs_free_dic(struct decompress_io_ctx *dic, + bool bypass_destroy_callback); + +struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) +{ + struct decompress_io_ctx *dic; + pgoff_t start_idx = start_idx_of_cluster(cc); + struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); + int i, ret; + + dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); + if (!dic) + return ERR_PTR(-ENOMEM); + + dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); + if (!dic->rpages) { + kmem_cache_free(dic_entry_slab, dic); + return ERR_PTR(-ENOMEM); + } + + dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; + dic->inode = cc->inode; + atomic_set(&dic->remaining_pages, cc->nr_cpages); + dic->cluster_idx = cc->cluster_idx; + dic->cluster_size = cc->cluster_size; + dic->log_cluster_size = cc->log_cluster_size; + dic->nr_cpages = cc->nr_cpages; + refcount_set(&dic->refcnt, 1); + dic->failed = false; + dic->need_verity = f2fs_need_verity(cc->inode, start_idx); + + for (i = 0; i < dic->cluster_size; i++) + dic->rpages[i] = cc->rpages[i]; + dic->nr_rpages = cc->cluster_size; + + dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); + if (!dic->cpages) { + ret = -ENOMEM; + goto out_free; + } + + for (i = 0; i < dic->nr_cpages; i++) { + struct page *page; + + page = f2fs_compress_alloc_page(); + if (!page) { + ret = -ENOMEM; + goto out_free; + } + + f2fs_set_compressed_page(page, cc->inode, + start_idx + i + 1, dic); + dic->cpages[i] = page; + } + + ret = f2fs_prepare_decomp_mem(dic, true); + if (ret) + goto out_free; + + return dic; + +out_free: + f2fs_free_dic(dic, true); + return ERR_PTR(ret); +} + +static void f2fs_free_dic(struct decompress_io_ctx *dic, + bool bypass_destroy_callback) +{ + int i; + + f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); + + if (dic->tpages) { + for (i = 0; i < dic->cluster_size; i++) { + if (dic->rpages[i]) + continue; + if (!dic->tpages[i]) + continue; + f2fs_compress_free_page(dic->tpages[i]); + } + page_array_free(dic->inode, dic->tpages, dic->cluster_size); + } + + if (dic->cpages) { + for (i = 0; i < dic->nr_cpages; i++) { + if (!dic->cpages[i]) + continue; + f2fs_compress_free_page(dic->cpages[i]); + } + page_array_free(dic->inode, dic->cpages, dic->nr_cpages); + } + + page_array_free(dic->inode, dic->rpages, dic->nr_rpages); + kmem_cache_free(dic_entry_slab, dic); +} + +static void f2fs_late_free_dic(struct work_struct *work) +{ + struct decompress_io_ctx *dic = + container_of(work, struct decompress_io_ctx, free_work); + + f2fs_free_dic(dic, false); +} + +static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) +{ + if (refcount_dec_and_test(&dic->refcnt)) { + if (in_task) { + f2fs_free_dic(dic, false); + } else { + INIT_WORK(&dic->free_work, f2fs_late_free_dic); + queue_work(F2FS_I_SB(dic->inode)->post_read_wq, + &dic->free_work); + } + } +} + +static void f2fs_verify_cluster(struct work_struct *work) +{ + struct decompress_io_ctx *dic = + container_of(work, struct decompress_io_ctx, verity_work); + int i; + + /* Verify, update, and unlock the decompressed pages. */ + for (i = 0; i < dic->cluster_size; i++) { + struct page *rpage = dic->rpages[i]; + + if (!rpage) + continue; + + if (fsverity_verify_page(rpage)) + SetPageUptodate(rpage); + else + ClearPageUptodate(rpage); + unlock_page(rpage); + } + + f2fs_put_dic(dic, true); +} + +/* + * This is called when a compressed cluster has been decompressed + * (or failed to be read and/or decompressed). + */ +void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, + bool in_task) +{ + int i; + + if (!failed && dic->need_verity) { + /* + * Note that to avoid deadlocks, the verity work can't be done + * on the decompression workqueue. This is because verifying + * the data pages can involve reading metadata pages from the + * file, and these metadata pages may be compressed. + */ + INIT_WORK(&dic->verity_work, f2fs_verify_cluster); + fsverity_enqueue_verify_work(&dic->verity_work); + return; + } + + /* Update and unlock the cluster's pagecache pages. */ + for (i = 0; i < dic->cluster_size; i++) { + struct page *rpage = dic->rpages[i]; + + if (!rpage) + continue; + + if (failed) + ClearPageUptodate(rpage); + else + SetPageUptodate(rpage); + unlock_page(rpage); + } + + /* + * Release the reference to the decompress_io_ctx that was being held + * for I/O completion. + */ + f2fs_put_dic(dic, in_task); +} + +/* + * Put a reference to a compressed page's decompress_io_ctx. + * + * This is called when the page is no longer needed and can be freed. + */ +void f2fs_put_page_dic(struct page *page, bool in_task) +{ + struct decompress_io_ctx *dic = + (struct decompress_io_ctx *)page_private(page); + + f2fs_put_dic(dic, in_task); +} + +/* + * check whether cluster blocks are contiguous, and add extent cache entry + * only if cluster blocks are logically and physically contiguous. + */ +unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) +{ + bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR; + int i = compressed ? 1 : 0; + block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, + dn->ofs_in_node + i); + + for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { + block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, + dn->ofs_in_node + i); + + if (!__is_valid_data_blkaddr(blkaddr)) + break; + if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) + return 0; + } + + return compressed ? i - 1 : i; +} + +const struct address_space_operations f2fs_compress_aops = { + .release_folio = f2fs_release_folio, + .invalidate_folio = f2fs_invalidate_folio, +}; + +struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) +{ + return sbi->compress_inode->i_mapping; +} + +void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) +{ + if (!sbi->compress_inode) + return; + invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); +} + +void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, + nid_t ino, block_t blkaddr) +{ + struct page *cpage; + int ret; + + if (!test_opt(sbi, COMPRESS_CACHE)) + return; + + if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) + return; + + if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) + return; + + cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); + if (cpage) { + f2fs_put_page(cpage, 0); + return; + } + + cpage = alloc_page(__GFP_NOWARN | __GFP_IO); + if (!cpage) + return; + + ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), + blkaddr, GFP_NOFS); + if (ret) { + f2fs_put_page(cpage, 0); + return; + } + + set_page_private_data(cpage, ino); + + if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) + goto out; + + memcpy(page_address(cpage), page_address(page), PAGE_SIZE); + SetPageUptodate(cpage); +out: + f2fs_put_page(cpage, 1); +} + +bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, + block_t blkaddr) +{ + struct page *cpage; + bool hitted = false; + + if (!test_opt(sbi, COMPRESS_CACHE)) + return false; + + cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), + blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); + if (cpage) { + if (PageUptodate(cpage)) { + atomic_inc(&sbi->compress_page_hit); + memcpy(page_address(page), + page_address(cpage), PAGE_SIZE); + hitted = true; + } + f2fs_put_page(cpage, 1); + } + + return hitted; +} + +void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) +{ + struct address_space *mapping = COMPRESS_MAPPING(sbi); + struct folio_batch fbatch; + pgoff_t index = 0; + pgoff_t end = MAX_BLKADDR(sbi); + + if (!mapping->nrpages) + return; + + folio_batch_init(&fbatch); + + do { + unsigned int nr, i; + + nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); + if (!nr) + break; + + for (i = 0; i < nr; i++) { + struct folio *folio = fbatch.folios[i]; + + folio_lock(folio); + if (folio->mapping != mapping) { + folio_unlock(folio); + continue; + } + + if (ino != get_page_private_data(&folio->page)) { + folio_unlock(folio); + continue; + } + + generic_error_remove_page(mapping, &folio->page); + folio_unlock(folio); + } + folio_batch_release(&fbatch); + cond_resched(); + } while (index < end); +} + +int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) +{ + struct inode *inode; + + if (!test_opt(sbi, COMPRESS_CACHE)) + return 0; + + inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); + if (IS_ERR(inode)) + return PTR_ERR(inode); + sbi->compress_inode = inode; + + sbi->compress_percent = COMPRESS_PERCENT; + sbi->compress_watermark = COMPRESS_WATERMARK; + + atomic_set(&sbi->compress_page_hit, 0); + + return 0; +} + +void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) +{ + if (!sbi->compress_inode) + return; + iput(sbi->compress_inode); + sbi->compress_inode = NULL; +} + +int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) +{ + dev_t dev = sbi->sb->s_bdev->bd_dev; + char slab_name[32]; + + if (!f2fs_sb_has_compression(sbi)) + return 0; + + sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); + + sbi->page_array_slab_size = sizeof(struct page *) << + F2FS_OPTION(sbi).compress_log_size; + + sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, + sbi->page_array_slab_size); + return sbi->page_array_slab ? 0 : -ENOMEM; +} + +void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) +{ + kmem_cache_destroy(sbi->page_array_slab); +} + +int __init f2fs_init_compress_cache(void) +{ + cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", + sizeof(struct compress_io_ctx)); + if (!cic_entry_slab) + return -ENOMEM; + dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", + sizeof(struct decompress_io_ctx)); + if (!dic_entry_slab) + goto free_cic; + return 0; +free_cic: + kmem_cache_destroy(cic_entry_slab); + return -ENOMEM; +} + +void f2fs_destroy_compress_cache(void) +{ + kmem_cache_destroy(dic_entry_slab); + kmem_cache_destroy(cic_entry_slab); +} -- cgit v1.2.3