From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- include/crypto/internal/cipher.h | 218 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 218 insertions(+) create mode 100644 include/crypto/internal/cipher.h (limited to 'include/crypto/internal/cipher.h') diff --git a/include/crypto/internal/cipher.h b/include/crypto/internal/cipher.h new file mode 100644 index 000000000..a9174ba90 --- /dev/null +++ b/include/crypto/internal/cipher.h @@ -0,0 +1,218 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Copyright (c) 2002 James Morris + * Copyright (c) 2002 David S. Miller (davem@redhat.com) + * Copyright (c) 2005 Herbert Xu + * + * Portions derived from Cryptoapi, by Alexander Kjeldaas + * and Nettle, by Niels Möller. + */ + +#ifndef _CRYPTO_INTERNAL_CIPHER_H +#define _CRYPTO_INTERNAL_CIPHER_H + +#include + +struct crypto_cipher { + struct crypto_tfm base; +}; + +/** + * DOC: Single Block Cipher API + * + * The single block cipher API is used with the ciphers of type + * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). + * + * Using the single block cipher API calls, operations with the basic cipher + * primitive can be implemented. These cipher primitives exclude any block + * chaining operations including IV handling. + * + * The purpose of this single block cipher API is to support the implementation + * of templates or other concepts that only need to perform the cipher operation + * on one block at a time. Templates invoke the underlying cipher primitive + * block-wise and process either the input or the output data of these cipher + * operations. + */ + +static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) +{ + return (struct crypto_cipher *)tfm; +} + +/** + * crypto_alloc_cipher() - allocate single block cipher handle + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * single block cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Allocate a cipher handle for a single block cipher. The returned struct + * crypto_cipher is the cipher handle that is required for any subsequent API + * invocation for that single block cipher. + * + * Return: allocated cipher handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ +static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, + u32 type, u32 mask) +{ + type &= ~CRYPTO_ALG_TYPE_MASK; + type |= CRYPTO_ALG_TYPE_CIPHER; + mask |= CRYPTO_ALG_TYPE_MASK; + + return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); +} + +static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) +{ + return &tfm->base; +} + +/** + * crypto_free_cipher() - zeroize and free the single block cipher handle + * @tfm: cipher handle to be freed + */ +static inline void crypto_free_cipher(struct crypto_cipher *tfm) +{ + crypto_free_tfm(crypto_cipher_tfm(tfm)); +} + +/** + * crypto_has_cipher() - Search for the availability of a single block cipher + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * single block cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Return: true when the single block cipher is known to the kernel crypto API; + * false otherwise + */ +static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) +{ + type &= ~CRYPTO_ALG_TYPE_MASK; + type |= CRYPTO_ALG_TYPE_CIPHER; + mask |= CRYPTO_ALG_TYPE_MASK; + + return crypto_has_alg(alg_name, type, mask); +} + +/** + * crypto_cipher_blocksize() - obtain block size for cipher + * @tfm: cipher handle + * + * The block size for the single block cipher referenced with the cipher handle + * tfm is returned. The caller may use that information to allocate appropriate + * memory for the data returned by the encryption or decryption operation + * + * Return: block size of cipher + */ +static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) +{ + return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); +} + +static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) +{ + return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); +} + +static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) +{ + return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); +} + +static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, + u32 flags) +{ + crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); +} + +static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, + u32 flags) +{ + crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); +} + +/** + * crypto_cipher_setkey() - set key for cipher + * @tfm: cipher handle + * @key: buffer holding the key + * @keylen: length of the key in bytes + * + * The caller provided key is set for the single block cipher referenced by the + * cipher handle. + * + * Note, the key length determines the cipher type. Many block ciphers implement + * different cipher modes depending on the key size, such as AES-128 vs AES-192 + * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 + * is performed. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ +int crypto_cipher_setkey(struct crypto_cipher *tfm, + const u8 *key, unsigned int keylen); + +/** + * crypto_cipher_encrypt_one() - encrypt one block of plaintext + * @tfm: cipher handle + * @dst: points to the buffer that will be filled with the ciphertext + * @src: buffer holding the plaintext to be encrypted + * + * Invoke the encryption operation of one block. The caller must ensure that + * the plaintext and ciphertext buffers are at least one block in size. + */ +void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, + u8 *dst, const u8 *src); + +/** + * crypto_cipher_decrypt_one() - decrypt one block of ciphertext + * @tfm: cipher handle + * @dst: points to the buffer that will be filled with the plaintext + * @src: buffer holding the ciphertext to be decrypted + * + * Invoke the decryption operation of one block. The caller must ensure that + * the plaintext and ciphertext buffers are at least one block in size. + */ +void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, + u8 *dst, const u8 *src); + +struct crypto_cipher_spawn { + struct crypto_spawn base; +}; + +static inline int crypto_grab_cipher(struct crypto_cipher_spawn *spawn, + struct crypto_instance *inst, + const char *name, u32 type, u32 mask) +{ + type &= ~CRYPTO_ALG_TYPE_MASK; + type |= CRYPTO_ALG_TYPE_CIPHER; + mask |= CRYPTO_ALG_TYPE_MASK; + return crypto_grab_spawn(&spawn->base, inst, name, type, mask); +} + +static inline void crypto_drop_cipher(struct crypto_cipher_spawn *spawn) +{ + crypto_drop_spawn(&spawn->base); +} + +static inline struct crypto_alg *crypto_spawn_cipher_alg( + struct crypto_cipher_spawn *spawn) +{ + return spawn->base.alg; +} + +static inline struct crypto_cipher *crypto_spawn_cipher( + struct crypto_cipher_spawn *spawn) +{ + u32 type = CRYPTO_ALG_TYPE_CIPHER; + u32 mask = CRYPTO_ALG_TYPE_MASK; + + return __crypto_cipher_cast(crypto_spawn_tfm(&spawn->base, type, mask)); +} + +static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm) +{ + return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher; +} + +#endif -- cgit v1.2.3