From 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Tue, 21 Feb 2023 18:24:12 -0800 Subject: Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ... --- lib/test_linear_ranges.c | 219 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 219 insertions(+) create mode 100644 lib/test_linear_ranges.c (limited to 'lib/test_linear_ranges.c') diff --git a/lib/test_linear_ranges.c b/lib/test_linear_ranges.c new file mode 100644 index 000000000..c18f9c0f1 --- /dev/null +++ b/lib/test_linear_ranges.c @@ -0,0 +1,219 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * KUnit test for the linear_ranges helper. + * + * Copyright (C) 2020, ROHM Semiconductors. + * Author: Matti Vaittinen + */ +#include + +#include + +/* First things first. I deeply dislike unit-tests. I have seen all the hell + * breaking loose when people who think the unit tests are "the silver bullet" + * to kill bugs get to decide how a company should implement testing strategy... + * + * Believe me, it may get _really_ ridiculous. It is tempting to think that + * walking through all the possible execution branches will nail down 100% of + * bugs. This may lead to ideas about demands to get certain % of "test + * coverage" - measured as line coverage. And that is one of the worst things + * you can do. + * + * Ask people to provide line coverage and they do. I've seen clever tools + * which generate test cases to test the existing functions - and by default + * these tools expect code to be correct and just generate checks which are + * passing when ran against current code-base. Run this generator and you'll get + * tests that do not test code is correct but just verify nothing changes. + * Problem is that testing working code is pointless. And if it is not + * working, your test must not assume it is working. You won't catch any bugs + * by such tests. What you can do is to generate a huge amount of tests. + * Especially if you were are asked to proivde 100% line-coverage x_x. So what + * does these tests - which are not finding any bugs now - do? + * + * They add inertia to every future development. I think it was Terry Pratchet + * who wrote someone having same impact as thick syrup has to chronometre. + * Excessive amount of unit-tests have this effect to development. If you do + * actually find _any_ bug from code in such environment and try fixing it... + * ...chances are you also need to fix the test cases. In sunny day you fix one + * test. But I've done refactoring which resulted 500+ broken tests (which had + * really zero value other than proving to managers that we do do "quality")... + * + * After this being said - there are situations where UTs can be handy. If you + * have algorithms which take some input and should produce output - then you + * can implement few, carefully selected simple UT-cases which test this. I've + * previously used this for example for netlink and device-tree data parsing + * functions. Feed some data examples to functions and verify the output is as + * expected. I am not covering all the cases but I will see the logic should be + * working. + * + * Here we also do some minor testing. I don't want to go through all branches + * or test more or less obvious things - but I want to see the main logic is + * working. And I definitely don't want to add 500+ test cases that break when + * some simple fix is done x_x. So - let's only add few, well selected tests + * which ensure as much logic is good as possible. + */ + +/* + * Test Range 1: + * selectors: 2 3 4 5 6 + * values (5): 10 20 30 40 50 + * + * Test Range 2: + * selectors: 7 8 9 10 + * values (4): 100 150 200 250 + */ + +#define RANGE1_MIN 10 +#define RANGE1_MIN_SEL 2 +#define RANGE1_STEP 10 + +/* 2, 3, 4, 5, 6 */ +static const unsigned int range1_sels[] = { RANGE1_MIN_SEL, RANGE1_MIN_SEL + 1, + RANGE1_MIN_SEL + 2, + RANGE1_MIN_SEL + 3, + RANGE1_MIN_SEL + 4 }; +/* 10, 20, 30, 40, 50 */ +static const unsigned int range1_vals[] = { RANGE1_MIN, RANGE1_MIN + + RANGE1_STEP, + RANGE1_MIN + RANGE1_STEP * 2, + RANGE1_MIN + RANGE1_STEP * 3, + RANGE1_MIN + RANGE1_STEP * 4 }; + +#define RANGE2_MIN 100 +#define RANGE2_MIN_SEL 7 +#define RANGE2_STEP 50 + +/* 7, 8, 9, 10 */ +static const unsigned int range2_sels[] = { RANGE2_MIN_SEL, RANGE2_MIN_SEL + 1, + RANGE2_MIN_SEL + 2, + RANGE2_MIN_SEL + 3 }; +/* 100, 150, 200, 250 */ +static const unsigned int range2_vals[] = { RANGE2_MIN, RANGE2_MIN + + RANGE2_STEP, + RANGE2_MIN + RANGE2_STEP * 2, + RANGE2_MIN + RANGE2_STEP * 3 }; + +#define RANGE1_NUM_VALS (ARRAY_SIZE(range1_vals)) +#define RANGE2_NUM_VALS (ARRAY_SIZE(range2_vals)) +#define RANGE_NUM_VALS (RANGE1_NUM_VALS + RANGE2_NUM_VALS) + +#define RANGE1_MAX_SEL (RANGE1_MIN_SEL + RANGE1_NUM_VALS - 1) +#define RANGE1_MAX_VAL (range1_vals[RANGE1_NUM_VALS - 1]) + +#define RANGE2_MAX_SEL (RANGE2_MIN_SEL + RANGE2_NUM_VALS - 1) +#define RANGE2_MAX_VAL (range2_vals[RANGE2_NUM_VALS - 1]) + +#define SMALLEST_SEL RANGE1_MIN_SEL +#define SMALLEST_VAL RANGE1_MIN + +static struct linear_range testr[] = { + LINEAR_RANGE(RANGE1_MIN, RANGE1_MIN_SEL, RANGE1_MAX_SEL, RANGE1_STEP), + LINEAR_RANGE(RANGE2_MIN, RANGE2_MIN_SEL, RANGE2_MAX_SEL, RANGE2_STEP), +}; + +static void range_test_get_value(struct kunit *test) +{ + int ret, i; + unsigned int sel, val; + + for (i = 0; i < RANGE1_NUM_VALS; i++) { + sel = range1_sels[i]; + ret = linear_range_get_value_array(&testr[0], 2, sel, &val); + KUNIT_EXPECT_EQ(test, 0, ret); + KUNIT_EXPECT_EQ(test, val, range1_vals[i]); + } + for (i = 0; i < RANGE2_NUM_VALS; i++) { + sel = range2_sels[i]; + ret = linear_range_get_value_array(&testr[0], 2, sel, &val); + KUNIT_EXPECT_EQ(test, 0, ret); + KUNIT_EXPECT_EQ(test, val, range2_vals[i]); + } + ret = linear_range_get_value_array(&testr[0], 2, sel + 1, &val); + KUNIT_EXPECT_NE(test, 0, ret); +} + +static void range_test_get_selector_high(struct kunit *test) +{ + int ret, i; + unsigned int sel; + bool found; + + for (i = 0; i < RANGE1_NUM_VALS; i++) { + ret = linear_range_get_selector_high(&testr[0], range1_vals[i], + &sel, &found); + KUNIT_EXPECT_EQ(test, 0, ret); + KUNIT_EXPECT_EQ(test, sel, range1_sels[i]); + KUNIT_EXPECT_TRUE(test, found); + } + + ret = linear_range_get_selector_high(&testr[0], RANGE1_MAX_VAL + 1, + &sel, &found); + KUNIT_EXPECT_LE(test, ret, 0); + + ret = linear_range_get_selector_high(&testr[0], RANGE1_MIN - 1, + &sel, &found); + KUNIT_EXPECT_EQ(test, 0, ret); + KUNIT_EXPECT_FALSE(test, found); + KUNIT_EXPECT_EQ(test, sel, range1_sels[0]); +} + +static void range_test_get_value_amount(struct kunit *test) +{ + int ret; + + ret = linear_range_values_in_range_array(&testr[0], 2); + KUNIT_EXPECT_EQ(test, (int)RANGE_NUM_VALS, ret); +} + +static void range_test_get_selector_low(struct kunit *test) +{ + int i, ret; + unsigned int sel; + bool found; + + for (i = 0; i < RANGE1_NUM_VALS; i++) { + ret = linear_range_get_selector_low_array(&testr[0], 2, + range1_vals[i], &sel, + &found); + KUNIT_EXPECT_EQ(test, 0, ret); + KUNIT_EXPECT_EQ(test, sel, range1_sels[i]); + KUNIT_EXPECT_TRUE(test, found); + } + for (i = 0; i < RANGE2_NUM_VALS; i++) { + ret = linear_range_get_selector_low_array(&testr[0], 2, + range2_vals[i], &sel, + &found); + KUNIT_EXPECT_EQ(test, 0, ret); + KUNIT_EXPECT_EQ(test, sel, range2_sels[i]); + KUNIT_EXPECT_TRUE(test, found); + } + + /* + * Seek value greater than range max => get_selector_*_low should + * return Ok - but set found to false as value is not in range + */ + ret = linear_range_get_selector_low_array(&testr[0], 2, + range2_vals[RANGE2_NUM_VALS - 1] + 1, + &sel, &found); + + KUNIT_EXPECT_EQ(test, 0, ret); + KUNIT_EXPECT_EQ(test, sel, range2_sels[RANGE2_NUM_VALS - 1]); + KUNIT_EXPECT_FALSE(test, found); +} + +static struct kunit_case range_test_cases[] = { + KUNIT_CASE(range_test_get_value_amount), + KUNIT_CASE(range_test_get_selector_high), + KUNIT_CASE(range_test_get_selector_low), + KUNIT_CASE(range_test_get_value), + {}, +}; + +static struct kunit_suite range_test_module = { + .name = "linear-ranges-test", + .test_cases = range_test_cases, +}; + +kunit_test_suites(&range_test_module); + +MODULE_LICENSE("GPL"); -- cgit v1.2.3