#include #include #include inline double rad(double degrees) { static const double degToRad = 4.0 * atan(1.0) / 180.0; return degrees * degToRad; } inline double deg(double radians) { static const double radToDeg = 180.0 / (4.0 * atan(1.0)); return radians * radToDeg; } Sunclock::Sunclock(double const &latitude_, double const &longitude_, double const &tz_offset_) : latitude(latitude_), longitude(longitude_), tz_offset(tz_offset_) {} double Sunclock::irradiance() { return irradiance(time(0)); } double Sunclock::irradiance(time_t when) { when = when + (time_t)(tz_offset * 60 * 60); struct tm *t = gmtime(&when); double _time_of_day = time_of_day(when); double _julian_day = julian_day(t, _time_of_day, tz_offset); double _julian_century = julian_century(_julian_day); double _mean_obliq_ecliptic = mean_obliq_ecliptic(_julian_century); double _mean_long_sun = mean_long_sun(_julian_century); double _mean_anom_sun = mean_anom_sun(_julian_century); double _sun_eq_of_centre = sun_eq_of_centre(_mean_anom_sun, _julian_century); double _sun_true_long = sun_true_long(_mean_long_sun, _sun_eq_of_centre); double _obliq_corr = obliq_corr(_mean_obliq_ecliptic, _julian_century); double _sun_app_long = sun_app_long(_sun_true_long, _julian_century); double _eccent_earth_orbit = eccent_earth_orbit(_julian_century); double _var_y = var_y(_obliq_corr); double _eq_of_time = eq_of_time(_var_y, _mean_long_sun, _eccent_earth_orbit, _mean_anom_sun); double _declination = declination(_obliq_corr, _sun_app_long); double _true_solar_time = true_solar_time(_time_of_day, _eq_of_time); double _hour_angle = hour_angle(_true_solar_time); double _solar_zenith = solar_zenith(_declination, _hour_angle); return std::cos(rad(_solar_zenith)); } time_t Sunclock::sunrise() { return sunrise(time(0)); } time_t Sunclock::sunrise(time_t date) { date = date + (time_t)(tz_offset * 60 * 60); struct tm *t = gmtime(&date); double _time_of_day = time_of_day(date); double _julian_day = julian_day(t, _time_of_day, tz_offset); double _julian_century = julian_century(_julian_day); double _mean_obliq_ecliptic = mean_obliq_ecliptic(_julian_century); double _mean_long_sun = mean_long_sun(_julian_century); double _mean_anom_sun = mean_anom_sun(_julian_century); double _sun_eq_of_centre = sun_eq_of_centre(_mean_anom_sun, _julian_century); double _sun_true_long = sun_true_long(_mean_long_sun, _sun_eq_of_centre); double _obliq_corr = obliq_corr(_mean_obliq_ecliptic, _julian_century); double _sun_app_long = sun_app_long(_sun_true_long, _julian_century); double _eccent_earth_orbit = eccent_earth_orbit(_julian_century); double _var_y = var_y(_obliq_corr); double _eq_of_time = eq_of_time(_var_y, _mean_long_sun, _eccent_earth_orbit, _mean_anom_sun); double _declination = declination(_obliq_corr, _sun_app_long); double _hour_angle_sunrise = hour_angle_sunrise(_declination); double noon_decimal_day = (720 - 4 * longitude - _eq_of_time + tz_offset * 60) / 1440; double decimal_day = noon_decimal_day - _hour_angle_sunrise * 4 / 1440; return time_from_decimal_day(date, decimal_day) - (time_t)(tz_offset * 60 * 60); } time_t Sunclock::solar_noon() { return solar_noon(time(0)); } time_t Sunclock::solar_noon(time_t date) { date = date + (time_t)(tz_offset * 60 * 60); struct tm *t = gmtime(&date); double _time_of_day = time_of_day(date); double _julian_day = julian_day(t, _time_of_day, tz_offset); double _julian_century = julian_century(_julian_day); double _mean_obliq_ecliptic = mean_obliq_ecliptic(_julian_century); double _mean_long_sun = mean_long_sun(_julian_century); double _mean_anom_sun = mean_anom_sun(_julian_century); double _obliq_corr = obliq_corr(_mean_obliq_ecliptic, _julian_century); double _eccent_earth_orbit = eccent_earth_orbit(_julian_century); double _var_y = var_y(_obliq_corr); double _eq_of_time = eq_of_time(_var_y, _mean_long_sun, _eccent_earth_orbit, _mean_anom_sun); double decimal_day = (720 - 4 * longitude - _eq_of_time + tz_offset * 60) / 1440; return time_from_decimal_day(date, decimal_day) - (time_t)(tz_offset * 60 * 60); } time_t Sunclock::sunset() { return sunset(time(0)); } time_t Sunclock::sunset(time_t date) { date = date + (time_t)(tz_offset * 60 * 60); struct tm *t = gmtime(&date); double _time_of_day = time_of_day(date); double _julian_day = julian_day(t, _time_of_day, tz_offset); double _julian_century = julian_century(_julian_day); double _mean_obliq_ecliptic = mean_obliq_ecliptic(_julian_century); double _mean_long_sun = mean_long_sun(_julian_century); double _mean_anom_sun = mean_anom_sun(_julian_century); double _sun_eq_of_centre = sun_eq_of_centre(_mean_anom_sun, _julian_century); double _sun_true_long = sun_true_long(_mean_long_sun, _sun_eq_of_centre); double _obliq_corr = obliq_corr(_mean_obliq_ecliptic, _julian_century); double _sun_app_long = sun_app_long(_sun_true_long, _julian_century); double _eccent_earth_orbit = eccent_earth_orbit(_julian_century); double _var_y = var_y(_obliq_corr); double _eq_of_time = eq_of_time(_var_y, _mean_long_sun, _eccent_earth_orbit, _mean_anom_sun); double _declination = declination(_obliq_corr, _sun_app_long); double _hour_angle_sunrise = hour_angle_sunrise(_declination); double noon_decimal_day = (720 - 4 * longitude - _eq_of_time + tz_offset * 60) / 1440; double decimal_day = noon_decimal_day + _hour_angle_sunrise * 4 / 1440; return time_from_decimal_day(date, decimal_day) - (time_t)(tz_offset * 60 * 60); } double Sunclock::time_of_day(time_t date) { struct tm *t = gmtime(&date); return (t->tm_hour + t->tm_min / 60.0 + t->tm_sec / 3600.0) / 24.0; } time_t Sunclock::time_from_decimal_day(time_t date, double decimal_day) { struct std::tm epoch; epoch.tm_isdst = 0; epoch.tm_sec = epoch.tm_min = epoch.tm_hour = epoch.tm_mon = 0; epoch.tm_mday = 1; epoch.tm_year = 70; time_t local_tz_offset = mktime(&epoch); struct tm *dt = gmtime(&date); struct tm t = {}; t.tm_year = dt->tm_year; t.tm_mon = dt->tm_mon; t.tm_mday = dt->tm_mday; double hours = 24.0 * decimal_day; t.tm_hour = int(hours); double minutes = (hours - t.tm_hour) * 60; t.tm_min = int(minutes); double seconds = (minutes - t.tm_sec) * 60; t.tm_sec = int(seconds) % 60; return mktime(&t) - local_tz_offset; } int Sunclock::days_since_1900(struct tm *t) { int year = t->tm_year; if (year < 0 || year > 199) { throw std::invalid_argument( "days_since_1900 - Date must be between 1900 and 2099"); } int month = t->tm_mon + 1; int days = t->tm_mday; if (month < 3) { month += 12; year--; } int yearDays = (int)(year * 365.25); int monthDays = (int)((month + 1) * 30.61); return (yearDays + monthDays + days - 63); } double Sunclock::julian_day(struct tm *t, double const &time_of_day, double const &tz_offset) { return days_since_1900(t) + 2415018.5 + time_of_day - tz_offset / 24; } double Sunclock::julian_century(double _julian_day) { return (_julian_day - 2451545.0) / 36525.0; } double Sunclock::mean_long_sun(double _julian_century) { return ( 280.46646 + fmod(_julian_century * (36000.76983 + _julian_century * 0.0003032), 360)); } double Sunclock::mean_anom_sun(double _julian_century) { return 357.52911 + _julian_century * (35999.05029 - 0.0001537 * _julian_century); } double Sunclock::sun_eq_of_centre(double _mean_anom_sun, double _julian_century) { return sin(rad(_mean_anom_sun)) * (1.914602 - _julian_century * (0.004817 + 0.000014 * _julian_century)) + sin(rad(2 * _mean_anom_sun)) * (0.019993 - 0.000101 * _julian_century) + sin(rad(3 * _mean_anom_sun)) * 0.000289; } double Sunclock::sun_true_long(double _mean_long_sun, double _sun_eq_of_centre) { return _mean_long_sun + _sun_eq_of_centre; } double Sunclock::eccent_earth_orbit(double _julian_century) { return 0.016708634 - _julian_century * (0.000042037 + 0.0001537 * _julian_century); } double Sunclock::var_y(double _obliq_corr) { return tan(rad(_obliq_corr / 2)) * tan(rad(_obliq_corr / 2)); } double Sunclock::mean_obliq_ecliptic(double _julian_century) { return (23 + (26 + ((21.448 - _julian_century * (46.815 + _julian_century * (0.00059 - _julian_century * 0.001813)))) / 60) / 60); } double Sunclock::obliq_corr(double _mean_obliq_ecliptic, double _julian_century) { return _mean_obliq_ecliptic + 0.00256 * cos(deg(125.04 - 1934.136 * _julian_century)); } double Sunclock::sun_app_long(double _sun_true_long, double _julian_century) { return (_sun_true_long - 0.00569 - 0.00478 * sin(deg(125.04 - 1934.136 * _julian_century))); } double Sunclock::declination(double _obliq_corr, double _sun_app_long) { return deg(asin(sin(rad(_obliq_corr)) * sin(rad(_sun_app_long)))); } double Sunclock::eq_of_time(double _var_y, double _mean_long_sun, double _eccent_earth_orbit, double _mean_anom_sun) { return 4 * deg(_var_y * sin(2 * rad(_mean_long_sun)) - 2 * _eccent_earth_orbit * sin(rad(_mean_anom_sun)) + 4 * _eccent_earth_orbit * _var_y * sin(rad(_mean_anom_sun)) * cos(2 * rad(_mean_long_sun)) - 0.5 * _var_y * _var_y * sin(4 * rad(_mean_long_sun)) - 1.25 * _eccent_earth_orbit * _eccent_earth_orbit * sin(2 * rad(_mean_anom_sun))); } double Sunclock::true_solar_time(double _time_of_day, double _eq_of_time) { return fmod( (_time_of_day * 1440 + _eq_of_time + 4 * longitude - 60 * tz_offset), 1440); } double Sunclock::hour_angle(double _true_solar_time) { return (_true_solar_time / 4 < 0 ? _true_solar_time / 4 + 180 : _true_solar_time / 4 - 180); } double Sunclock::hour_angle_sunrise(double _declination) { return deg( acos(cos(rad(90.833)) / (cos(rad(latitude)) * cos(rad(_declination))) - tan(rad(latitude)) * tan(rad(_declination)))); } double Sunclock::solar_zenith(double _declination, double _hour_angle) { return deg(acos(sin(rad(latitude)) * sin(rad(_declination)) + cos(rad(latitude)) * cos(rad(_declination)) * cos(rad(_hour_angle)))); } double Sunclock::solar_elevation(double _solar_zenith) { return 90 - _solar_zenith; }