1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="384pt" height="384pt" version="1.1" viewBox="0 0 384 384">
<defs>
<filter id="alpha" width="100%" height="100%" x="0%" y="0%" filterUnits="objectBoundingBox">
<feColorMatrix in="SourceGraphic" type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
</filter>
<mask id="mask1">
<g filter="url(#alpha)">
<rect width="384" height="384" x="0" y="0" style="fill:rgb(0%,0%,0%);fill-opacity:0.2"/>
</g>
</mask>
<clipPath id="clip2">
<rect width="384" height="384" x="0" y="0"/>
</clipPath>
<g id="surface8" clip-path="url(#clip2)">
<path style="fill:rgb(0%,0%,0%)" d="M 287.160156 186 C 284.03125 161.511719 271.589844 139.167969 252.421875 123.613281 C 248.519531 125.0625 244.378906 126 240 126 C 224.902344 126 211.921875 116.472656 206.605469 103.171875 C 201.773438 102.410156 196.890625 102.019531 192 102 C 179.207031 102 166.542969 104.558594 154.753906 109.523438 L 173.011719 141.164062 C 179.125 139.09375 185.535156 138.023438 191.992188 137.996094 C 220.484375 138.023438 245.03125 158.082031 250.726562 185.996094 L 287.152344 185.996094 Z M 287.136719 210 L 250.785156 210 C 245.082031 237.933594 220.511719 257.996094 192.003906 258 C 185.546875 257.980469 179.136719 256.921875 173.019531 254.859375 L 154.808594 286.40625 C 166.574219 291.386719 179.21875 293.96875 191.996094 294.003906 C 196.90625 293.957031 201.804688 293.535156 206.648438 292.742188 C 211.976562 279.496094 224.9375 270.003906 239.996094 270.003906 C 244.390625 270.003906 248.558594 270.921875 252.464844 272.394531 C 271.609375 256.824219 284.023438 234.484375 287.132812 210.003906 Z M 264 90 C 264 76.746094 253.253906 66 240 66 C 226.746094 66 216 76.746094 216 90 C 216 103.253906 226.746094 114 240 114 C 253.253906 114 264 103.253906 264 90 Z M 264 306 C 264 292.746094 253.253906 282 240 282 C 226.746094 282 216 292.746094 216 306 C 216 319.253906 226.746094 330 240 330 C 253.253906 330 264 319.253906 264 306 Z M 152.257812 153.167969 L 134.039062 121.621094 C 116.703125 134.785156 104.355469 153.457031 99.023438 174.5625 C 104.53125 180.894531 108 189.039062 108 198 C 108 206.953125 104.542969 215.085938 99.046875 221.414062 C 104.351562 242.542969 116.683594 261.238281 134.015625 274.429688 L 152.257812 242.859375 C 139.402344 231.492188 132.027344 215.164062 132 198.003906 C 132.035156 180.851562 139.40625 164.535156 152.257812 153.171875 Z M 96 198 C 96 184.746094 85.253906 174 72 174 C 58.746094 174 48 184.746094 48 198 C 48 211.253906 58.746094 222 72 222 C 85.253906 222 96 211.253906 96 198 Z M 96 198"/>
</g>
<mask id="mask2">
<g filter="url(#alpha)">
<rect width="384" height="384" x="0" y="0" style="fill:rgb(0%,0%,0%);fill-opacity:0.2"/>
</g>
</mask>
<clipPath id="clip3">
<rect width="384" height="384" x="0" y="0"/>
</clipPath>
<g id="surface11" clip-path="url(#clip3)">
<path style="fill:rgb(100%,100%,100%)" d="M 191.988281 24 C 99.210938 24.007812 24 99.222656 24 192 C 24.027344 192.984375 24.0625 193.96875 24.105469 194.953125 C 25.765625 103.40625 100.425781 30.046875 191.988281 30 L 192 30 C 283.535156 30.074219 358.164062 103.410156 359.835938 194.929688 C 359.894531 193.953125 359.945312 192.976562 359.988281 192 C 359.988281 99.222656 284.777344 24.007812 192 24 Z M 191.988281 24"/>
</g>
<filter id="alpha-62-3" width="100%" height="100%" x="0%" y="0%" filterUnits="objectBoundingBox">
<feColorMatrix in="SourceGraphic" type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
</filter>
<mask id="mask1-7-6">
<g filter="url(#alpha)" style="filter:url(#alpha-62-3)">
<rect width="384" height="384" x="0" y="0" style="fill:rgb(0%,0%,0%);fill-opacity:0.6"/>
</g>
</mask>
<image id="image9" width="384" height="384" xlink:href=""/>
<mask id="mask2-0-0">
<g filter="url(#alpha)" style="filter:url(#alpha-62-3)">
<rect width="384" height="384" x="0" y="0" style="fill:rgb(0%,0%,0%);fill-opacity:0.301961"/>
</g>
</mask>
<clipPath id="clip2-9-6">
<rect width="384" height="384" x="0" y="0"/>
</clipPath>
<g id="surface12" clip-path="url(#clip2-9-6)">
<path style="fill:rgb(0%,0%,0%)" d="M 234.582031 198.542969 L 231.984375 211.699219 C 228.78125 212.558594 225.734375 213.851562 222.902344 215.410156 L 211.230469 208 L 199.921875 218.933594 L 207.519531 230.238281 C 205.914062 232.976562 204.703125 235.847656 203.8125 238.949219 L 190.277344 241.546875 L 190.277344 257.304688 L 203.8125 259.898438 C 204.695312 263.003906 205.914062 266.054688 207.519531 268.796875 L 199.921875 279.917969 L 211.230469 291.039062 L 222.902344 283.441406 C 225.734375 284.992188 228.78125 286.289062 231.984375 287.148438 L 234.582031 300.308594 L 250.890625 300.308594 L 253.488281 287.148438 C 256.691406 286.289062 259.742188 285 262.570312 283.441406 L 274.246094 291.039062 L 285.554688 279.917969 L 277.953125 268.796875 C 279.558594 266.058594 280.773438 263.003906 281.664062 259.898438 L 295.195312 257.304688 L 295.195312 241.546875 L 281.664062 238.949219 C 280.777344 235.847656 279.558594 232.976562 277.953125 230.238281 L 285.554688 218.933594 L 274.246094 208 L 262.570312 215.410156 C 259.742188 213.859375 256.691406 212.558594 253.488281 211.699219 L 250.890625 198.542969 Z M 242.742188 231.53125 C 252.570312 231.53125 260.535156 239.496094 260.535156 249.324219 C 260.535156 259.15625 252.570312 267.117188 242.742188 267.117188 C 232.910156 267.117188 224.945312 259.15625 224.945312 249.324219 C 224.945312 239.496094 232.910156 231.53125 242.742188 231.53125 Z M 242.742188 231.53125"/>
</g>
</defs>
<g transform="matrix(1.0044643,0,0,1.0044643,-0.10714286,-1.6071429)">
<g>
<path d="M 360,192 C 360,284.78516 284.78516,360 192,360 99.214844,360 24,284.78516 24,192 24,99.214844 99.214844,24 192,24 c 92.78516,0 168,75.214844 168,168 z m 0,0" style="fill:#de4a23"/>
<use width="100%" height="100%" x="0" y="0" mask="url(#mask1)" xlink:href="#surface8"/>
<path d="m 287.16016,180 c -3.125,-24.49219 -15.56641,-46.83594 -34.73829,-62.39062 C 248.51953,119.07031 244.37891,120 240,120 224.90234,120 211.92187,110.46484 206.60547,97.171875 201.77344,96.410156 196.89062,96.019531 192,96 c -12.79297,0 -25.45703,2.558594 -37.24609,7.52344 l 18.25781,31.64062 c 6.11328,-2.07031 12.52344,-3.14062 18.98047,-3.16797 28.49218,0.0273 53.03906,20.08594 58.73437,48 h 36.42578 z m -0.0234,24 h -36.35156 c -5.70313,27.93359 -30.27344,47.99609 -58.78125,48 -6.45704,-0.0195 -12.86719,-1.07813 -18.98438,-3.14063 l -18.21094,31.54688 c 11.76563,4.98047 24.41016,7.5625 37.1875,7.59766 4.91016,-0.0469 9.8086,-0.46875 14.65235,-1.26172 5.32812,-13.2461 18.28906,-22.73828 33.34765,-22.73828 4.39453,0 8.5625,0.91796 12.46875,2.39062 19.14453,-15.57031 31.5586,-37.91016 34.66797,-62.39062 z M 264,84 c 0,-13.253906 -10.74609,-24 -24,-24 -13.25391,0 -24,10.746094 -24,24 0,13.253906 10.74609,24 24,24 13.25391,0 24,-10.746094 24,-24 z m 0,216 c 0,-13.25391 -10.74609,-24 -24,-24 -13.25391,0 -24,10.74609 -24,24 0,13.25391 10.74609,24 24,24 13.25391,0 24,-10.74609 24,-24 z M 152.25781,147.16797 134.03906,115.61719 C 116.70313,128.78516 104.35547,147.45703 99.023438,168.5625 104.53125,174.89453 108,183.03906 108,192 c 0,8.95312 -3.45703,17.08594 -8.953125,23.41406 5.304685,21.12891 17.636715,39.82422 34.968745,53.01563 l 18.24219,-31.57032 C 139.40234,225.49219 132.02734,209.16406 132,192.00391 c 0.0352,-17.15235 7.40625,-33.46875 20.25781,-44.83204 z M 96,192 c 0,-13.25391 -10.746094,-24 -24,-24 -13.253906,0 -24,10.74609 -24,24 0,13.25391 10.746094,24 24,24 13.253906,0 24,-10.74609 24,-24 z m 0,0" style="fill:#ffffff"/>
<use width="100%" height="100%" x="0" y="0" mask="url(#mask2)" xlink:href="#surface11"/>
</g>
<path d="M 32.0625,251 C 32.026062,252.66306 32,254.3282 32,256 c 0,123.71357 100.28649,224 224,224 123.71356,0 224,-100.28644 224,-224 0,-1.6718 -0.0261,-3.33694 -0.0625,-5 C 477.27753,372.40329 378.04176,470 256,470 133.95828,470 34.722471,372.4033 32.0625,251 Z" transform="scale(0.75)" style="opacity:0.3"/>
</g>
<g transform="translate(37.587062,32.314866)">
<use width="100%" height="100%" x="0" y="0" mask="url(#mask1-7-6)" xlink:href="#image9"/>
<path d="m 330.61719,244.92578 c 0,51.01953 -41.35938,92.37891 -92.37891,92.37891 -51.01953,0 -92.37891,-41.35938 -92.37891,-92.37891 0,-51.01953 41.35938,-92.37891 92.37891,-92.37891 51.01953,0 92.37891,41.35938 92.37891,92.37891 z m 0,0" style="fill:#8c42ab"/>
<use width="100%" height="100%" x="0" y="0" mask="url(#mask2-0-0)" xlink:href="#surface12"/>
<path style="fill:#ffffff" d="m 230.08203,194.04297 -2.59766,13.15625 c -3.20312,0.85937 -6.25,2.15234 -9.08203,3.71094 L 206.73047,203.5 l -11.3086,10.93359 7.59766,11.30469 c -1.60547,2.73828 -2.81641,5.60938 -3.70703,8.71094 l -13.53516,2.59765 v 15.75782 l 13.53516,2.59375 c 0.88281,3.10547 2.10156,6.15625 3.70703,8.89843 l -7.59766,11.1211 11.3086,11.12109 11.67187,-7.59765 c 2.83203,1.55078 5.87891,2.84765 9.08203,3.70703 l 2.59766,13.16015 h 16.30859 l 2.59766,-13.16015 c 3.20313,-0.85938 6.25391,-2.14844 9.08203,-3.70703 l 11.67578,7.59765 11.3086,-11.12109 -7.60157,-11.1211 c 1.60547,-2.73828 2.82032,-5.79296 3.71094,-8.89843 l 13.53125,-2.59375 v -15.75782 l -13.53125,-2.59765 c -0.88672,-3.10156 -2.10547,-5.97266 -3.71094,-8.71094 l 7.60157,-11.30469 -11.3086,-10.93359 -11.67578,7.41016 c -2.82812,-1.55079 -5.8789,-2.85157 -9.08203,-3.71094 l -2.59766,-13.15625 z m 8.16016,32.98828 c 9.82812,0 17.79297,7.96484 17.79297,17.79297 0,9.83203 -7.96485,17.79297 -17.79297,17.79297 -9.83203,0 -17.79688,-7.96094 -17.79688,-17.79297 0,-9.82813 7.96485,-17.79297 17.79688,-17.79297 z m 0,0"/>
</g>
</svg>
|