diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/accounting/taskstats.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/accounting/taskstats.rst')
-rw-r--r-- | Documentation/accounting/taskstats.rst | 180 |
1 files changed, 180 insertions, 0 deletions
diff --git a/Documentation/accounting/taskstats.rst b/Documentation/accounting/taskstats.rst new file mode 100644 index 000000000..2a28b7f55 --- /dev/null +++ b/Documentation/accounting/taskstats.rst @@ -0,0 +1,180 @@ +============================= +Per-task statistics interface +============================= + + +Taskstats is a netlink-based interface for sending per-task and +per-process statistics from the kernel to userspace. + +Taskstats was designed for the following benefits: + +- efficiently provide statistics during lifetime of a task and on its exit +- unified interface for multiple accounting subsystems +- extensibility for use by future accounting patches + +Terminology +----------- + +"pid", "tid" and "task" are used interchangeably and refer to the standard +Linux task defined by struct task_struct. per-pid stats are the same as +per-task stats. + +"tgid", "process" and "thread group" are used interchangeably and refer to the +tasks that share an mm_struct i.e. the traditional Unix process. Despite the +use of tgid, there is no special treatment for the task that is thread group +leader - a process is deemed alive as long as it has any task belonging to it. + +Usage +----- + +To get statistics during a task's lifetime, userspace opens a unicast netlink +socket (NETLINK_GENERIC family) and sends commands specifying a pid or a tgid. +The response contains statistics for a task (if pid is specified) or the sum of +statistics for all tasks of the process (if tgid is specified). + +To obtain statistics for tasks which are exiting, the userspace listener +sends a register command and specifies a cpumask. Whenever a task exits on +one of the cpus in the cpumask, its per-pid statistics are sent to the +registered listener. Using cpumasks allows the data received by one listener +to be limited and assists in flow control over the netlink interface and is +explained in more detail below. + +If the exiting task is the last thread exiting its thread group, +an additional record containing the per-tgid stats is also sent to userspace. +The latter contains the sum of per-pid stats for all threads in the thread +group, both past and present. + +getdelays.c is a simple utility demonstrating usage of the taskstats interface +for reporting delay accounting statistics. Users can register cpumasks, +send commands and process responses, listen for per-tid/tgid exit data, +write the data received to a file and do basic flow control by increasing +receive buffer sizes. + +Interface +--------- + +The user-kernel interface is encapsulated in include/linux/taskstats.h + +To avoid this documentation becoming obsolete as the interface evolves, only +an outline of the current version is given. taskstats.h always overrides the +description here. + +struct taskstats is the common accounting structure for both per-pid and +per-tgid data. It is versioned and can be extended by each accounting subsystem +that is added to the kernel. The fields and their semantics are defined in the +taskstats.h file. + +The data exchanged between user and kernel space is a netlink message belonging +to the NETLINK_GENERIC family and using the netlink attributes interface. +The messages are in the format:: + + +----------+- - -+-------------+-------------------+ + | nlmsghdr | Pad | genlmsghdr | taskstats payload | + +----------+- - -+-------------+-------------------+ + + +The taskstats payload is one of the following three kinds: + +1. Commands: Sent from user to kernel. Commands to get data on +a pid/tgid consist of one attribute, of type TASKSTATS_CMD_ATTR_PID/TGID, +containing a u32 pid or tgid in the attribute payload. The pid/tgid denotes +the task/process for which userspace wants statistics. + +Commands to register/deregister interest in exit data from a set of cpus +consist of one attribute, of type +TASKSTATS_CMD_ATTR_REGISTER/DEREGISTER_CPUMASK and contain a cpumask in the +attribute payload. The cpumask is specified as an ascii string of +comma-separated cpu ranges e.g. to listen to exit data from cpus 1,2,3,5,7,8 +the cpumask would be "1-3,5,7-8". If userspace forgets to deregister interest +in cpus before closing the listening socket, the kernel cleans up its interest +set over time. However, for the sake of efficiency, an explicit deregistration +is advisable. + +2. Response for a command: sent from the kernel in response to a userspace +command. The payload is a series of three attributes of type: + +a) TASKSTATS_TYPE_AGGR_PID/TGID : attribute containing no payload but indicates +a pid/tgid will be followed by some stats. + +b) TASKSTATS_TYPE_PID/TGID: attribute whose payload is the pid/tgid whose stats +are being returned. + +c) TASKSTATS_TYPE_STATS: attribute with a struct taskstats as payload. The +same structure is used for both per-pid and per-tgid stats. + +3. New message sent by kernel whenever a task exits. The payload consists of a + series of attributes of the following type: + +a) TASKSTATS_TYPE_AGGR_PID: indicates next two attributes will be pid+stats +b) TASKSTATS_TYPE_PID: contains exiting task's pid +c) TASKSTATS_TYPE_STATS: contains the exiting task's per-pid stats +d) TASKSTATS_TYPE_AGGR_TGID: indicates next two attributes will be tgid+stats +e) TASKSTATS_TYPE_TGID: contains tgid of process to which task belongs +f) TASKSTATS_TYPE_STATS: contains the per-tgid stats for exiting task's process + + +per-tgid stats +-------------- + +Taskstats provides per-process stats, in addition to per-task stats, since +resource management is often done at a process granularity and aggregating task +stats in userspace alone is inefficient and potentially inaccurate (due to lack +of atomicity). + +However, maintaining per-process, in addition to per-task stats, within the +kernel has space and time overheads. To address this, the taskstats code +accumulates each exiting task's statistics into a process-wide data structure. +When the last task of a process exits, the process level data accumulated also +gets sent to userspace (along with the per-task data). + +When a user queries to get per-tgid data, the sum of all other live threads in +the group is added up and added to the accumulated total for previously exited +threads of the same thread group. + +Extending taskstats +------------------- + +There are two ways to extend the taskstats interface to export more +per-task/process stats as patches to collect them get added to the kernel +in future: + +1. Adding more fields to the end of the existing struct taskstats. Backward + compatibility is ensured by the version number within the + structure. Userspace will use only the fields of the struct that correspond + to the version its using. + +2. Defining separate statistic structs and using the netlink attributes + interface to return them. Since userspace processes each netlink attribute + independently, it can always ignore attributes whose type it does not + understand (because it is using an older version of the interface). + + +Choosing between 1. and 2. is a matter of trading off flexibility and +overhead. If only a few fields need to be added, then 1. is the preferable +path since the kernel and userspace don't need to incur the overhead of +processing new netlink attributes. But if the new fields expand the existing +struct too much, requiring disparate userspace accounting utilities to +unnecessarily receive large structures whose fields are of no interest, then +extending the attributes structure would be worthwhile. + +Flow control for taskstats +-------------------------- + +When the rate of task exits becomes large, a listener may not be able to keep +up with the kernel's rate of sending per-tid/tgid exit data leading to data +loss. This possibility gets compounded when the taskstats structure gets +extended and the number of cpus grows large. + +To avoid losing statistics, userspace should do one or more of the following: + +- increase the receive buffer sizes for the netlink sockets opened by + listeners to receive exit data. + +- create more listeners and reduce the number of cpus being listened to by + each listener. In the extreme case, there could be one listener for each cpu. + Users may also consider setting the cpu affinity of the listener to the subset + of cpus to which it listens, especially if they are listening to just one cpu. + +Despite these measures, if the userspace receives ENOBUFS error messages +indicated overflow of receive buffers, it should take measures to handle the +loss of data. |