diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/admin-guide/cgroup-v1/hugetlb.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/admin-guide/cgroup-v1/hugetlb.rst')
-rw-r--r-- | Documentation/admin-guide/cgroup-v1/hugetlb.rst | 135 |
1 files changed, 135 insertions, 0 deletions
diff --git a/Documentation/admin-guide/cgroup-v1/hugetlb.rst b/Documentation/admin-guide/cgroup-v1/hugetlb.rst new file mode 100644 index 000000000..0fa724d82 --- /dev/null +++ b/Documentation/admin-guide/cgroup-v1/hugetlb.rst @@ -0,0 +1,135 @@ +================== +HugeTLB Controller +================== + +HugeTLB controller can be created by first mounting the cgroup filesystem. + +# mount -t cgroup -o hugetlb none /sys/fs/cgroup + +With the above step, the initial or the parent HugeTLB group becomes +visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in +the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup. + +New groups can be created under the parent group /sys/fs/cgroup:: + + # cd /sys/fs/cgroup + # mkdir g1 + # echo $$ > g1/tasks + +The above steps create a new group g1 and move the current shell +process (bash) into it. + +Brief summary of control files:: + + hugetlb.<hugepagesize>.rsvd.limit_in_bytes # set/show limit of "hugepagesize" hugetlb reservations + hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes # show max "hugepagesize" hugetlb reservations and no-reserve faults + hugetlb.<hugepagesize>.rsvd.usage_in_bytes # show current reservations and no-reserve faults for "hugepagesize" hugetlb + hugetlb.<hugepagesize>.rsvd.failcnt # show the number of allocation failure due to HugeTLB reservation limit + hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb faults + hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded + hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb + hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB usage limit + hugetlb.<hugepagesize>.numa_stat # show the numa information of the hugetlb memory charged to this cgroup + +For a system supporting three hugepage sizes (64k, 32M and 1G), the control +files include:: + + hugetlb.1GB.limit_in_bytes + hugetlb.1GB.max_usage_in_bytes + hugetlb.1GB.numa_stat + hugetlb.1GB.usage_in_bytes + hugetlb.1GB.failcnt + hugetlb.1GB.rsvd.limit_in_bytes + hugetlb.1GB.rsvd.max_usage_in_bytes + hugetlb.1GB.rsvd.usage_in_bytes + hugetlb.1GB.rsvd.failcnt + hugetlb.64KB.limit_in_bytes + hugetlb.64KB.max_usage_in_bytes + hugetlb.64KB.numa_stat + hugetlb.64KB.usage_in_bytes + hugetlb.64KB.failcnt + hugetlb.64KB.rsvd.limit_in_bytes + hugetlb.64KB.rsvd.max_usage_in_bytes + hugetlb.64KB.rsvd.usage_in_bytes + hugetlb.64KB.rsvd.failcnt + hugetlb.32MB.limit_in_bytes + hugetlb.32MB.max_usage_in_bytes + hugetlb.32MB.numa_stat + hugetlb.32MB.usage_in_bytes + hugetlb.32MB.failcnt + hugetlb.32MB.rsvd.limit_in_bytes + hugetlb.32MB.rsvd.max_usage_in_bytes + hugetlb.32MB.rsvd.usage_in_bytes + hugetlb.32MB.rsvd.failcnt + + +1. Page fault accounting + +hugetlb.<hugepagesize>.limit_in_bytes +hugetlb.<hugepagesize>.max_usage_in_bytes +hugetlb.<hugepagesize>.usage_in_bytes +hugetlb.<hugepagesize>.failcnt + +The HugeTLB controller allows users to limit the HugeTLB usage (page fault) per +control group and enforces the limit during page fault. Since HugeTLB +doesn't support page reclaim, enforcing the limit at page fault time implies +that, the application will get SIGBUS signal if it tries to fault in HugeTLB +pages beyond its limit. Therefore the application needs to know exactly how many +HugeTLB pages it uses before hand, and the sysadmin needs to make sure that +there are enough available on the machine for all the users to avoid processes +getting SIGBUS. + + +2. Reservation accounting + +hugetlb.<hugepagesize>.rsvd.limit_in_bytes +hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes +hugetlb.<hugepagesize>.rsvd.usage_in_bytes +hugetlb.<hugepagesize>.rsvd.failcnt + +The HugeTLB controller allows to limit the HugeTLB reservations per control +group and enforces the controller limit at reservation time and at the fault of +HugeTLB memory for which no reservation exists. Since reservation limits are +enforced at reservation time (on mmap or shget), reservation limits never causes +the application to get SIGBUS signal if the memory was reserved before hand. For +MAP_NORESERVE allocations, the reservation limit behaves the same as the fault +limit, enforcing memory usage at fault time and causing the application to +receive a SIGBUS if it's crossing its limit. + +Reservation limits are superior to page fault limits described above, since +reservation limits are enforced at reservation time (on mmap or shget), and +never causes the application to get SIGBUS signal if the memory was reserved +before hand. This allows for easier fallback to alternatives such as +non-HugeTLB memory for example. In the case of page fault accounting, it's very +hard to avoid processes getting SIGBUS since the sysadmin needs precisely know +the HugeTLB usage of all the tasks in the system and make sure there is enough +pages to satisfy all requests. Avoiding tasks getting SIGBUS on overcommited +systems is practically impossible with page fault accounting. + + +3. Caveats with shared memory + +For shared HugeTLB memory, both HugeTLB reservation and page faults are charged +to the first task that causes the memory to be reserved or faulted, and all +subsequent uses of this reserved or faulted memory is done without charging. + +Shared HugeTLB memory is only uncharged when it is unreserved or deallocated. +This is usually when the HugeTLB file is deleted, and not when the task that +caused the reservation or fault has exited. + + +4. Caveats with HugeTLB cgroup offline. + +When a HugeTLB cgroup goes offline with some reservations or faults still +charged to it, the behavior is as follows: + +- The fault charges are charged to the parent HugeTLB cgroup (reparented), +- the reservation charges remain on the offline HugeTLB cgroup. + +This means that if a HugeTLB cgroup gets offlined while there is still HugeTLB +reservations charged to it, that cgroup persists as a zombie until all HugeTLB +reservations are uncharged. HugeTLB reservations behave in this manner to match +the memory controller whose cgroups also persist as zombie until all charged +memory is uncharged. Also, the tracking of HugeTLB reservations is a bit more +complex compared to the tracking of HugeTLB faults, so it is significantly +harder to reparent reservations at offline time. |