diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/admin-guide/module-signing.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/admin-guide/module-signing.rst')
-rw-r--r-- | Documentation/admin-guide/module-signing.rst | 285 |
1 files changed, 285 insertions, 0 deletions
diff --git a/Documentation/admin-guide/module-signing.rst b/Documentation/admin-guide/module-signing.rst new file mode 100644 index 000000000..7d7c7c8a5 --- /dev/null +++ b/Documentation/admin-guide/module-signing.rst @@ -0,0 +1,285 @@ +Kernel module signing facility +------------------------------ + +.. CONTENTS +.. +.. - Overview. +.. - Configuring module signing. +.. - Generating signing keys. +.. - Public keys in the kernel. +.. - Manually signing modules. +.. - Signed modules and stripping. +.. - Loading signed modules. +.. - Non-valid signatures and unsigned modules. +.. - Administering/protecting the private key. + + +======== +Overview +======== + +The kernel module signing facility cryptographically signs modules during +installation and then checks the signature upon loading the module. This +allows increased kernel security by disallowing the loading of unsigned modules +or modules signed with an invalid key. Module signing increases security by +making it harder to load a malicious module into the kernel. The module +signature checking is done by the kernel so that it is not necessary to have +trusted userspace bits. + +This facility uses X.509 ITU-T standard certificates to encode the public keys +involved. The signatures are not themselves encoded in any industrial standard +type. The facility currently only supports the RSA public key encryption +standard (though it is pluggable and permits others to be used). The possible +hash algorithms that can be used are SHA-1, SHA-224, SHA-256, SHA-384, and +SHA-512 (the algorithm is selected by data in the signature). + + +========================== +Configuring module signing +========================== + +The module signing facility is enabled by going to the +:menuselection:`Enable Loadable Module Support` section of +the kernel configuration and turning on:: + + CONFIG_MODULE_SIG "Module signature verification" + +This has a number of options available: + + (1) :menuselection:`Require modules to be validly signed` + (``CONFIG_MODULE_SIG_FORCE``) + + This specifies how the kernel should deal with a module that has a + signature for which the key is not known or a module that is unsigned. + + If this is off (ie. "permissive"), then modules for which the key is not + available and modules that are unsigned are permitted, but the kernel will + be marked as being tainted, and the concerned modules will be marked as + tainted, shown with the character 'E'. + + If this is on (ie. "restrictive"), only modules that have a valid + signature that can be verified by a public key in the kernel's possession + will be loaded. All other modules will generate an error. + + Irrespective of the setting here, if the module has a signature block that + cannot be parsed, it will be rejected out of hand. + + + (2) :menuselection:`Automatically sign all modules` + (``CONFIG_MODULE_SIG_ALL``) + + If this is on then modules will be automatically signed during the + modules_install phase of a build. If this is off, then the modules must + be signed manually using:: + + scripts/sign-file + + + (3) :menuselection:`Which hash algorithm should modules be signed with?` + + This presents a choice of which hash algorithm the installation phase will + sign the modules with: + + =============================== ========================================== + ``CONFIG_MODULE_SIG_SHA1`` :menuselection:`Sign modules with SHA-1` + ``CONFIG_MODULE_SIG_SHA224`` :menuselection:`Sign modules with SHA-224` + ``CONFIG_MODULE_SIG_SHA256`` :menuselection:`Sign modules with SHA-256` + ``CONFIG_MODULE_SIG_SHA384`` :menuselection:`Sign modules with SHA-384` + ``CONFIG_MODULE_SIG_SHA512`` :menuselection:`Sign modules with SHA-512` + =============================== ========================================== + + The algorithm selected here will also be built into the kernel (rather + than being a module) so that modules signed with that algorithm can have + their signatures checked without causing a dependency loop. + + + (4) :menuselection:`File name or PKCS#11 URI of module signing key` + (``CONFIG_MODULE_SIG_KEY``) + + Setting this option to something other than its default of + ``certs/signing_key.pem`` will disable the autogeneration of signing keys + and allow the kernel modules to be signed with a key of your choosing. + The string provided should identify a file containing both a private key + and its corresponding X.509 certificate in PEM form, or — on systems where + the OpenSSL ENGINE_pkcs11 is functional — a PKCS#11 URI as defined by + RFC7512. In the latter case, the PKCS#11 URI should reference both a + certificate and a private key. + + If the PEM file containing the private key is encrypted, or if the + PKCS#11 token requires a PIN, this can be provided at build time by + means of the ``KBUILD_SIGN_PIN`` variable. + + + (5) :menuselection:`Additional X.509 keys for default system keyring` + (``CONFIG_SYSTEM_TRUSTED_KEYS``) + + This option can be set to the filename of a PEM-encoded file containing + additional certificates which will be included in the system keyring by + default. + +Note that enabling module signing adds a dependency on the OpenSSL devel +packages to the kernel build processes for the tool that does the signing. + + +======================= +Generating signing keys +======================= + +Cryptographic keypairs are required to generate and check signatures. A +private key is used to generate a signature and the corresponding public key is +used to check it. The private key is only needed during the build, after which +it can be deleted or stored securely. The public key gets built into the +kernel so that it can be used to check the signatures as the modules are +loaded. + +Under normal conditions, when ``CONFIG_MODULE_SIG_KEY`` is unchanged from its +default, the kernel build will automatically generate a new keypair using +openssl if one does not exist in the file:: + + certs/signing_key.pem + +during the building of vmlinux (the public part of the key needs to be built +into vmlinux) using parameters in the:: + + certs/x509.genkey + +file (which is also generated if it does not already exist). + +It is strongly recommended that you provide your own x509.genkey file. + +Most notably, in the x509.genkey file, the req_distinguished_name section +should be altered from the default:: + + [ req_distinguished_name ] + #O = Unspecified company + CN = Build time autogenerated kernel key + #emailAddress = unspecified.user@unspecified.company + +The generated RSA key size can also be set with:: + + [ req ] + default_bits = 4096 + + +It is also possible to manually generate the key private/public files using the +x509.genkey key generation configuration file in the root node of the Linux +kernel sources tree and the openssl command. The following is an example to +generate the public/private key files:: + + openssl req -new -nodes -utf8 -sha256 -days 36500 -batch -x509 \ + -config x509.genkey -outform PEM -out kernel_key.pem \ + -keyout kernel_key.pem + +The full pathname for the resulting kernel_key.pem file can then be specified +in the ``CONFIG_MODULE_SIG_KEY`` option, and the certificate and key therein will +be used instead of an autogenerated keypair. + + +========================= +Public keys in the kernel +========================= + +The kernel contains a ring of public keys that can be viewed by root. They're +in a keyring called ".builtin_trusted_keys" that can be seen by:: + + [root@deneb ~]# cat /proc/keys + ... + 223c7853 I------ 1 perm 1f030000 0 0 keyring .builtin_trusted_keys: 1 + 302d2d52 I------ 1 perm 1f010000 0 0 asymmetri Fedora kernel signing key: d69a84e6bce3d216b979e9505b3e3ef9a7118079: X509.RSA a7118079 [] + ... + +Beyond the public key generated specifically for module signing, additional +trusted certificates can be provided in a PEM-encoded file referenced by the +``CONFIG_SYSTEM_TRUSTED_KEYS`` configuration option. + +Further, the architecture code may take public keys from a hardware store and +add those in also (e.g. from the UEFI key database). + +Finally, it is possible to add additional public keys by doing:: + + keyctl padd asymmetric "" [.builtin_trusted_keys-ID] <[key-file] + +e.g.:: + + keyctl padd asymmetric "" 0x223c7853 <my_public_key.x509 + +Note, however, that the kernel will only permit keys to be added to +``.builtin_trusted_keys`` **if** the new key's X.509 wrapper is validly signed by a key +that is already resident in the ``.builtin_trusted_keys`` at the time the key was added. + + +======================== +Manually signing modules +======================== + +To manually sign a module, use the scripts/sign-file tool available in +the Linux kernel source tree. The script requires 4 arguments: + + 1. The hash algorithm (e.g., sha256) + 2. The private key filename or PKCS#11 URI + 3. The public key filename + 4. The kernel module to be signed + +The following is an example to sign a kernel module:: + + scripts/sign-file sha512 kernel-signkey.priv \ + kernel-signkey.x509 module.ko + +The hash algorithm used does not have to match the one configured, but if it +doesn't, you should make sure that hash algorithm is either built into the +kernel or can be loaded without requiring itself. + +If the private key requires a passphrase or PIN, it can be provided in the +$KBUILD_SIGN_PIN environment variable. + + +============================ +Signed modules and stripping +============================ + +A signed module has a digital signature simply appended at the end. The string +``~Module signature appended~.`` at the end of the module's file confirms that a +signature is present but it does not confirm that the signature is valid! + +Signed modules are BRITTLE as the signature is outside of the defined ELF +container. Thus they MAY NOT be stripped once the signature is computed and +attached. Note the entire module is the signed payload, including any and all +debug information present at the time of signing. + + +====================== +Loading signed modules +====================== + +Modules are loaded with insmod, modprobe, ``init_module()`` or +``finit_module()``, exactly as for unsigned modules as no processing is +done in userspace. The signature checking is all done within the kernel. + + +========================================= +Non-valid signatures and unsigned modules +========================================= + +If ``CONFIG_MODULE_SIG_FORCE`` is enabled or module.sig_enforce=1 is supplied on +the kernel command line, the kernel will only load validly signed modules +for which it has a public key. Otherwise, it will also load modules that are +unsigned. Any module for which the kernel has a key, but which proves to have +a signature mismatch will not be permitted to load. + +Any module that has an unparseable signature will be rejected. + + +========================================= +Administering/protecting the private key +========================================= + +Since the private key is used to sign modules, viruses and malware could use +the private key to sign modules and compromise the operating system. The +private key must be either destroyed or moved to a secure location and not kept +in the root node of the kernel source tree. + +If you use the same private key to sign modules for multiple kernel +configurations, you must ensure that the module version information is +sufficient to prevent loading a module into a different kernel. Either +set ``CONFIG_MODVERSIONS=y`` or ensure that each configuration has a different +kernel release string by changing ``EXTRAVERSION`` or ``CONFIG_LOCALVERSION``. |