diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/admin-guide/pm/suspend-flows.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/admin-guide/pm/suspend-flows.rst')
-rw-r--r-- | Documentation/admin-guide/pm/suspend-flows.rst | 270 |
1 files changed, 270 insertions, 0 deletions
diff --git a/Documentation/admin-guide/pm/suspend-flows.rst b/Documentation/admin-guide/pm/suspend-flows.rst new file mode 100644 index 000000000..c479d7462 --- /dev/null +++ b/Documentation/admin-guide/pm/suspend-flows.rst @@ -0,0 +1,270 @@ +.. SPDX-License-Identifier: GPL-2.0 +.. include:: <isonum.txt> + +========================= +System Suspend Code Flows +========================= + +:Copyright: |copy| 2020 Intel Corporation + +:Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> + +At least one global system-wide transition needs to be carried out for the +system to get from the working state into one of the supported +:doc:`sleep states <sleep-states>`. Hibernation requires more than one +transition to occur for this purpose, but the other sleep states, commonly +referred to as *system-wide suspend* (or simply *system suspend*) states, need +only one. + +For those sleep states, the transition from the working state of the system into +the target sleep state is referred to as *system suspend* too (in the majority +of cases, whether this means a transition or a sleep state of the system should +be clear from the context) and the transition back from the sleep state into the +working state is referred to as *system resume*. + +The kernel code flows associated with the suspend and resume transitions for +different sleep states of the system are quite similar, but there are some +significant differences between the :ref:`suspend-to-idle <s2idle>` code flows +and the code flows related to the :ref:`suspend-to-RAM <s2ram>` and +:ref:`standby <standby>` sleep states. + +The :ref:`suspend-to-RAM <s2ram>` and :ref:`standby <standby>` sleep states +cannot be implemented without platform support and the difference between them +boils down to the platform-specific actions carried out by the suspend and +resume hooks that need to be provided by the platform driver to make them +available. Apart from that, the suspend and resume code flows for these sleep +states are mostly identical, so they both together will be referred to as +*platform-dependent suspend* states in what follows. + + +.. _s2idle_suspend: + +Suspend-to-idle Suspend Code Flow +================================= + +The following steps are taken in order to transition the system from the working +state to the :ref:`suspend-to-idle <s2idle>` sleep state: + + 1. Invoking system-wide suspend notifiers. + + Kernel subsystems can register callbacks to be invoked when the suspend + transition is about to occur and when the resume transition has finished. + + That allows them to prepare for the change of the system state and to clean + up after getting back to the working state. + + 2. Freezing tasks. + + Tasks are frozen primarily in order to avoid unchecked hardware accesses + from user space through MMIO regions or I/O registers exposed directly to + it and to prevent user space from entering the kernel while the next step + of the transition is in progress (which might have been problematic for + various reasons). + + All user space tasks are intercepted as though they were sent a signal and + put into uninterruptible sleep until the end of the subsequent system resume + transition. + + The kernel threads that choose to be frozen during system suspend for + specific reasons are frozen subsequently, but they are not intercepted. + Instead, they are expected to periodically check whether or not they need + to be frozen and to put themselves into uninterruptible sleep if so. [Note, + however, that kernel threads can use locking and other concurrency controls + available in kernel space to synchronize themselves with system suspend and + resume, which can be much more precise than the freezing, so the latter is + not a recommended option for kernel threads.] + + 3. Suspending devices and reconfiguring IRQs. + + Devices are suspended in four phases called *prepare*, *suspend*, + *late suspend* and *noirq suspend* (see :ref:`driverapi_pm_devices` for more + information on what exactly happens in each phase). + + Every device is visited in each phase, but typically it is not physically + accessed in more than two of them. + + The runtime PM API is disabled for every device during the *late* suspend + phase and high-level ("action") interrupt handlers are prevented from being + invoked before the *noirq* suspend phase. + + Interrupts are still handled after that, but they are only acknowledged to + interrupt controllers without performing any device-specific actions that + would be triggered in the working state of the system (those actions are + deferred till the subsequent system resume transition as described + `below <s2idle_resume_>`_). + + IRQs associated with system wakeup devices are "armed" so that the resume + transition of the system is started when one of them signals an event. + + 4. Freezing the scheduler tick and suspending timekeeping. + + When all devices have been suspended, CPUs enter the idle loop and are put + into the deepest available idle state. While doing that, each of them + "freezes" its own scheduler tick so that the timer events associated with + the tick do not occur until the CPU is woken up by another interrupt source. + + The last CPU to enter the idle state also stops the timekeeping which + (among other things) prevents high resolution timers from triggering going + forward until the first CPU that is woken up restarts the timekeeping. + That allows the CPUs to stay in the deep idle state relatively long in one + go. + + From this point on, the CPUs can only be woken up by non-timer hardware + interrupts. If that happens, they go back to the idle state unless the + interrupt that woke up one of them comes from an IRQ that has been armed for + system wakeup, in which case the system resume transition is started. + + +.. _s2idle_resume: + +Suspend-to-idle Resume Code Flow +================================ + +The following steps are taken in order to transition the system from the +:ref:`suspend-to-idle <s2idle>` sleep state into the working state: + + 1. Resuming timekeeping and unfreezing the scheduler tick. + + When one of the CPUs is woken up (by a non-timer hardware interrupt), it + leaves the idle state entered in the last step of the preceding suspend + transition, restarts the timekeeping (unless it has been restarted already + by another CPU that woke up earlier) and the scheduler tick on that CPU is + unfrozen. + + If the interrupt that has woken up the CPU was armed for system wakeup, + the system resume transition begins. + + 2. Resuming devices and restoring the working-state configuration of IRQs. + + Devices are resumed in four phases called *noirq resume*, *early resume*, + *resume* and *complete* (see :ref:`driverapi_pm_devices` for more + information on what exactly happens in each phase). + + Every device is visited in each phase, but typically it is not physically + accessed in more than two of them. + + The working-state configuration of IRQs is restored after the *noirq* resume + phase and the runtime PM API is re-enabled for every device whose driver + supports it during the *early* resume phase. + + 3. Thawing tasks. + + Tasks frozen in step 2 of the preceding `suspend <s2idle_suspend_>`_ + transition are "thawed", which means that they are woken up from the + uninterruptible sleep that they went into at that time and user space tasks + are allowed to exit the kernel. + + 4. Invoking system-wide resume notifiers. + + This is analogous to step 1 of the `suspend <s2idle_suspend_>`_ transition + and the same set of callbacks is invoked at this point, but a different + "notification type" parameter value is passed to them. + + +Platform-dependent Suspend Code Flow +==================================== + +The following steps are taken in order to transition the system from the working +state to platform-dependent suspend state: + + 1. Invoking system-wide suspend notifiers. + + This step is the same as step 1 of the suspend-to-idle suspend transition + described `above <s2idle_suspend_>`_. + + 2. Freezing tasks. + + This step is the same as step 2 of the suspend-to-idle suspend transition + described `above <s2idle_suspend_>`_. + + 3. Suspending devices and reconfiguring IRQs. + + This step is analogous to step 3 of the suspend-to-idle suspend transition + described `above <s2idle_suspend_>`_, but the arming of IRQs for system + wakeup generally does not have any effect on the platform. + + There are platforms that can go into a very deep low-power state internally + when all CPUs in them are in sufficiently deep idle states and all I/O + devices have been put into low-power states. On those platforms, + suspend-to-idle can reduce system power very effectively. + + On the other platforms, however, low-level components (like interrupt + controllers) need to be turned off in a platform-specific way (implemented + in the hooks provided by the platform driver) to achieve comparable power + reduction. + + That usually prevents in-band hardware interrupts from waking up the system, + which must be done in a special platform-dependent way. Then, the + configuration of system wakeup sources usually starts when system wakeup + devices are suspended and is finalized by the platform suspend hooks later + on. + + 4. Disabling non-boot CPUs. + + On some platforms the suspend hooks mentioned above must run in a one-CPU + configuration of the system (in particular, the hardware cannot be accessed + by any code running in parallel with the platform suspend hooks that may, + and often do, trap into the platform firmware in order to finalize the + suspend transition). + + For this reason, the CPU offline/online (CPU hotplug) framework is used + to take all of the CPUs in the system, except for one (the boot CPU), + offline (typically, the CPUs that have been taken offline go into deep idle + states). + + This means that all tasks are migrated away from those CPUs and all IRQs are + rerouted to the only CPU that remains online. + + 5. Suspending core system components. + + This prepares the core system components for (possibly) losing power going + forward and suspends the timekeeping. + + 6. Platform-specific power removal. + + This is expected to remove power from all of the system components except + for the memory controller and RAM (in order to preserve the contents of the + latter) and some devices designated for system wakeup. + + In many cases control is passed to the platform firmware which is expected + to finalize the suspend transition as needed. + + +Platform-dependent Resume Code Flow +=================================== + +The following steps are taken in order to transition the system from a +platform-dependent suspend state into the working state: + + 1. Platform-specific system wakeup. + + The platform is woken up by a signal from one of the designated system + wakeup devices (which need not be an in-band hardware interrupt) and + control is passed back to the kernel (the working configuration of the + platform may need to be restored by the platform firmware before the + kernel gets control again). + + 2. Resuming core system components. + + The suspend-time configuration of the core system components is restored and + the timekeeping is resumed. + + 3. Re-enabling non-boot CPUs. + + The CPUs disabled in step 4 of the preceding suspend transition are taken + back online and their suspend-time configuration is restored. + + 4. Resuming devices and restoring the working-state configuration of IRQs. + + This step is the same as step 2 of the suspend-to-idle suspend transition + described `above <s2idle_resume_>`_. + + 5. Thawing tasks. + + This step is the same as step 3 of the suspend-to-idle suspend transition + described `above <s2idle_resume_>`_. + + 6. Invoking system-wide resume notifiers. + + This step is the same as step 4 of the suspend-to-idle suspend transition + described `above <s2idle_resume_>`_. |