diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/admin-guide/tainted-kernels.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/admin-guide/tainted-kernels.rst')
-rw-r--r-- | Documentation/admin-guide/tainted-kernels.rst | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/Documentation/admin-guide/tainted-kernels.rst b/Documentation/admin-guide/tainted-kernels.rst new file mode 100644 index 000000000..92a8a07f5 --- /dev/null +++ b/Documentation/admin-guide/tainted-kernels.rst @@ -0,0 +1,184 @@ +Tainted kernels +--------------- + +The kernel will mark itself as 'tainted' when something occurs that might be +relevant later when investigating problems. Don't worry too much about this, +most of the time it's not a problem to run a tainted kernel; the information is +mainly of interest once someone wants to investigate some problem, as its real +cause might be the event that got the kernel tainted. That's why bug reports +from tainted kernels will often be ignored by developers, hence try to reproduce +problems with an untainted kernel. + +Note the kernel will remain tainted even after you undo what caused the taint +(i.e. unload a proprietary kernel module), to indicate the kernel remains not +trustworthy. That's also why the kernel will print the tainted state when it +notices an internal problem (a 'kernel bug'), a recoverable error +('kernel oops') or a non-recoverable error ('kernel panic') and writes debug +information about this to the logs ``dmesg`` outputs. It's also possible to +check the tainted state at runtime through a file in ``/proc/``. + + +Tainted flag in bugs, oops or panics messages +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +You find the tainted state near the top in a line starting with 'CPU:'; if or +why the kernel was tainted is shown after the Process ID ('PID:') and a shortened +name of the command ('Comm:') that triggered the event:: + + BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 + Oops: 0002 [#1] SMP PTI + CPU: 0 PID: 4424 Comm: insmod Tainted: P W O 4.20.0-0.rc6.fc30 #1 + Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011 + RIP: 0010:my_oops_init+0x13/0x1000 [kpanic] + [...] + +You'll find a 'Not tainted: ' there if the kernel was not tainted at the +time of the event; if it was, then it will print 'Tainted: ' and characters +either letters or blanks. In above example it looks like this:: + + Tainted: P W O + +The meaning of those characters is explained in the table below. In this case +the kernel got tainted earlier because a proprietary Module (``P``) was loaded, +a warning occurred (``W``), and an externally-built module was loaded (``O``). +To decode other letters use the table below. + + +Decoding tainted state at runtime +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +At runtime, you can query the tainted state by reading +``cat /proc/sys/kernel/tainted``. If that returns ``0``, the kernel is not +tainted; any other number indicates the reasons why it is. The easiest way to +decode that number is the script ``tools/debugging/kernel-chktaint``, which your +distribution might ship as part of a package called ``linux-tools`` or +``kernel-tools``; if it doesn't you can download the script from +`git.kernel.org <https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/tools/debugging/kernel-chktaint>`_ +and execute it with ``sh kernel-chktaint``, which would print something like +this on the machine that had the statements in the logs that were quoted earlier:: + + Kernel is Tainted for following reasons: + * Proprietary module was loaded (#0) + * Kernel issued warning (#9) + * Externally-built ('out-of-tree') module was loaded (#12) + See Documentation/admin-guide/tainted-kernels.rst in the Linux kernel or + https://www.kernel.org/doc/html/latest/admin-guide/tainted-kernels.html for + a more details explanation of the various taint flags. + Raw taint value as int/string: 4609/'P W O ' + +You can try to decode the number yourself. That's easy if there was only one +reason that got your kernel tainted, as in this case you can find the number +with the table below. If there were multiple reasons you need to decode the +number, as it is a bitfield, where each bit indicates the absence or presence of +a particular type of taint. It's best to leave that to the aforementioned +script, but if you need something quick you can use this shell command to check +which bits are set:: + + $ for i in $(seq 18); do echo $(($i-1)) $(($(cat /proc/sys/kernel/tainted)>>($i-1)&1));done + +Table for decoding tainted state +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +=== === ====== ======================================================== +Bit Log Number Reason that got the kernel tainted +=== === ====== ======================================================== + 0 G/P 1 proprietary module was loaded + 1 _/F 2 module was force loaded + 2 _/S 4 kernel running on an out of specification system + 3 _/R 8 module was force unloaded + 4 _/M 16 processor reported a Machine Check Exception (MCE) + 5 _/B 32 bad page referenced or some unexpected page flags + 6 _/U 64 taint requested by userspace application + 7 _/D 128 kernel died recently, i.e. there was an OOPS or BUG + 8 _/A 256 ACPI table overridden by user + 9 _/W 512 kernel issued warning + 10 _/C 1024 staging driver was loaded + 11 _/I 2048 workaround for bug in platform firmware applied + 12 _/O 4096 externally-built ("out-of-tree") module was loaded + 13 _/E 8192 unsigned module was loaded + 14 _/L 16384 soft lockup occurred + 15 _/K 32768 kernel has been live patched + 16 _/X 65536 auxiliary taint, defined for and used by distros + 17 _/T 131072 kernel was built with the struct randomization plugin + 18 _/N 262144 an in-kernel test has been run +=== === ====== ======================================================== + +Note: The character ``_`` is representing a blank in this table to make reading +easier. + +More detailed explanation for tainting +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + 0) ``G`` if all modules loaded have a GPL or compatible license, ``P`` if + any proprietary module has been loaded. Modules without a + MODULE_LICENSE or with a MODULE_LICENSE that is not recognised by + insmod as GPL compatible are assumed to be proprietary. + + 1) ``F`` if any module was force loaded by ``insmod -f``, ``' '`` if all + modules were loaded normally. + + 2) ``S`` if the kernel is running on a processor or system that is out of + specification: hardware has been put into an unsupported configuration, + therefore proper execution cannot be guaranteed. + Kernel will be tainted if, for example: + + - on x86: PAE is forced through forcepae on intel CPUs (such as Pentium M) + which do not report PAE but may have a functional implementation, an SMP + kernel is running on non officially capable SMP Athlon CPUs, MSRs are + being poked at from userspace. + - on arm: kernel running on certain CPUs (such as Keystone 2) without + having certain kernel features enabled. + - on arm64: there are mismatched hardware features between CPUs, the + bootloader has booted CPUs in different modes. + - certain drivers are being used on non supported architectures (such as + scsi/snic on something else than x86_64, scsi/ips on non + x86/x86_64/itanium, have broken firmware settings for the + irqchip/irq-gic on arm64 ...). + - x86/x86_64: Microcode late loading is dangerous and will result in + tainting the kernel. It requires that all CPUs rendezvous to make sure + the update happens when the system is as quiescent as possible. However, + a higher priority MCE/SMI/NMI can move control flow away from that + rendezvous and interrupt the update, which can be detrimental to the + machine. + + 3) ``R`` if a module was force unloaded by ``rmmod -f``, ``' '`` if all + modules were unloaded normally. + + 4) ``M`` if any processor has reported a Machine Check Exception, + ``' '`` if no Machine Check Exceptions have occurred. + + 5) ``B`` If a page-release function has found a bad page reference or some + unexpected page flags. This indicates a hardware problem or a kernel bug; + there should be other information in the log indicating why this tainting + occurred. + + 6) ``U`` if a user or user application specifically requested that the + Tainted flag be set, ``' '`` otherwise. + + 7) ``D`` if the kernel has died recently, i.e. there was an OOPS or BUG. + + 8) ``A`` if an ACPI table has been overridden. + + 9) ``W`` if a warning has previously been issued by the kernel. + (Though some warnings may set more specific taint flags.) + + 10) ``C`` if a staging driver has been loaded. + + 11) ``I`` if the kernel is working around a severe bug in the platform + firmware (BIOS or similar). + + 12) ``O`` if an externally-built ("out-of-tree") module has been loaded. + + 13) ``E`` if an unsigned module has been loaded in a kernel supporting + module signature. + + 14) ``L`` if a soft lockup has previously occurred on the system. + + 15) ``K`` if the kernel has been live patched. + + 16) ``X`` Auxiliary taint, defined for and used by Linux distributors. + + 17) ``T`` Kernel was build with the randstruct plugin, which can intentionally + produce extremely unusual kernel structure layouts (even performance + pathological ones), which is important to know when debugging. Set at + build time. |