diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/arm/booting.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/arm/booting.rst')
-rw-r--r-- | Documentation/arm/booting.rst | 237 |
1 files changed, 237 insertions, 0 deletions
diff --git a/Documentation/arm/booting.rst b/Documentation/arm/booting.rst new file mode 100644 index 000000000..5974e37b3 --- /dev/null +++ b/Documentation/arm/booting.rst @@ -0,0 +1,237 @@ +================= +Booting ARM Linux +================= + +Author: Russell King + +Date : 18 May 2002 + +The following documentation is relevant to 2.4.18-rmk6 and beyond. + +In order to boot ARM Linux, you require a boot loader, which is a small +program that runs before the main kernel. The boot loader is expected +to initialise various devices, and eventually call the Linux kernel, +passing information to the kernel. + +Essentially, the boot loader should provide (as a minimum) the +following: + +1. Setup and initialise the RAM. +2. Initialise one serial port. +3. Detect the machine type. +4. Setup the kernel tagged list. +5. Load initramfs. +6. Call the kernel image. + + +1. Setup and initialise RAM +--------------------------- + +Existing boot loaders: + MANDATORY +New boot loaders: + MANDATORY + +The boot loader is expected to find and initialise all RAM that the +kernel will use for volatile data storage in the system. It performs +this in a machine dependent manner. (It may use internal algorithms +to automatically locate and size all RAM, or it may use knowledge of +the RAM in the machine, or any other method the boot loader designer +sees fit.) + + +2. Initialise one serial port +----------------------------- + +Existing boot loaders: + OPTIONAL, RECOMMENDED +New boot loaders: + OPTIONAL, RECOMMENDED + +The boot loader should initialise and enable one serial port on the +target. This allows the kernel serial driver to automatically detect +which serial port it should use for the kernel console (generally +used for debugging purposes, or communication with the target.) + +As an alternative, the boot loader can pass the relevant 'console=' +option to the kernel via the tagged lists specifying the port, and +serial format options as described in + + Documentation/admin-guide/kernel-parameters.rst. + + +3. Detect the machine type +-------------------------- + +Existing boot loaders: + OPTIONAL +New boot loaders: + MANDATORY except for DT-only platforms + +The boot loader should detect the machine type its running on by some +method. Whether this is a hard coded value or some algorithm that +looks at the connected hardware is beyond the scope of this document. +The boot loader must ultimately be able to provide a MACH_TYPE_xxx +value to the kernel. (see linux/arch/arm/tools/mach-types). This +should be passed to the kernel in register r1. + +For DT-only platforms, the machine type will be determined by device +tree. set the machine type to all ones (~0). This is not strictly +necessary, but assures that it will not match any existing types. + +4. Setup boot data +------------------ + +Existing boot loaders: + OPTIONAL, HIGHLY RECOMMENDED +New boot loaders: + MANDATORY + +The boot loader must provide either a tagged list or a dtb image for +passing configuration data to the kernel. The physical address of the +boot data is passed to the kernel in register r2. + +4a. Setup the kernel tagged list +-------------------------------- + +The boot loader must create and initialise the kernel tagged list. +A valid tagged list starts with ATAG_CORE and ends with ATAG_NONE. +The ATAG_CORE tag may or may not be empty. An empty ATAG_CORE tag +has the size field set to '2' (0x00000002). The ATAG_NONE must set +the size field to zero. + +Any number of tags can be placed in the list. It is undefined +whether a repeated tag appends to the information carried by the +previous tag, or whether it replaces the information in its +entirety; some tags behave as the former, others the latter. + +The boot loader must pass at a minimum the size and location of +the system memory, and root filesystem location. Therefore, the +minimum tagged list should look:: + + +-----------+ + base -> | ATAG_CORE | | + +-----------+ | + | ATAG_MEM | | increasing address + +-----------+ | + | ATAG_NONE | | + +-----------+ v + +The tagged list should be stored in system RAM. + +The tagged list must be placed in a region of memory where neither +the kernel decompressor nor initrd 'bootp' program will overwrite +it. The recommended placement is in the first 16KiB of RAM. + +4b. Setup the device tree +------------------------- + +The boot loader must load a device tree image (dtb) into system ram +at a 64bit aligned address and initialize it with the boot data. The +dtb format is documented at https://www.devicetree.org/specifications/. +The kernel will look for the dtb magic value of 0xd00dfeed at the dtb +physical address to determine if a dtb has been passed instead of a +tagged list. + +The boot loader must pass at a minimum the size and location of the +system memory, and the root filesystem location. The dtb must be +placed in a region of memory where the kernel decompressor will not +overwrite it, while remaining within the region which will be covered +by the kernel's low-memory mapping. + +A safe location is just above the 128MiB boundary from start of RAM. + +5. Load initramfs. +------------------ + +Existing boot loaders: + OPTIONAL +New boot loaders: + OPTIONAL + +If an initramfs is in use then, as with the dtb, it must be placed in +a region of memory where the kernel decompressor will not overwrite it +while also with the region which will be covered by the kernel's +low-memory mapping. + +A safe location is just above the device tree blob which itself will +be loaded just above the 128MiB boundary from the start of RAM as +recommended above. + +6. Calling the kernel image +--------------------------- + +Existing boot loaders: + MANDATORY +New boot loaders: + MANDATORY + +There are two options for calling the kernel zImage. If the zImage +is stored in flash, and is linked correctly to be run from flash, +then it is legal for the boot loader to call the zImage in flash +directly. + +The zImage may also be placed in system RAM and called there. The +kernel should be placed in the first 128MiB of RAM. It is recommended +that it is loaded above 32MiB in order to avoid the need to relocate +prior to decompression, which will make the boot process slightly +faster. + +When booting a raw (non-zImage) kernel the constraints are tighter. +In this case the kernel must be loaded at an offset into system equal +to TEXT_OFFSET - PAGE_OFFSET. + +In any case, the following conditions must be met: + +- Quiesce all DMA capable devices so that memory does not get + corrupted by bogus network packets or disk data. This will save + you many hours of debug. + +- CPU register settings + + - r0 = 0, + - r1 = machine type number discovered in (3) above. + - r2 = physical address of tagged list in system RAM, or + physical address of device tree block (dtb) in system RAM + +- CPU mode + + All forms of interrupts must be disabled (IRQs and FIQs) + + For CPUs which do not include the ARM virtualization extensions, the + CPU must be in SVC mode. (A special exception exists for Angel) + + CPUs which include support for the virtualization extensions can be + entered in HYP mode in order to enable the kernel to make full use of + these extensions. This is the recommended boot method for such CPUs, + unless the virtualisations are already in use by a pre-installed + hypervisor. + + If the kernel is not entered in HYP mode for any reason, it must be + entered in SVC mode. + +- Caches, MMUs + + The MMU must be off. + + Instruction cache may be on or off. + + Data cache must be off. + + If the kernel is entered in HYP mode, the above requirements apply to + the HYP mode configuration in addition to the ordinary PL1 (privileged + kernel modes) configuration. In addition, all traps into the + hypervisor must be disabled, and PL1 access must be granted for all + peripherals and CPU resources for which this is architecturally + possible. Except for entering in HYP mode, the system configuration + should be such that a kernel which does not include support for the + virtualization extensions can boot correctly without extra help. + +- The boot loader is expected to call the kernel image by jumping + directly to the first instruction of the kernel image. + + On CPUs supporting the ARM instruction set, the entry must be + made in ARM state, even for a Thumb-2 kernel. + + On CPUs supporting only the Thumb instruction set such as + Cortex-M class CPUs, the entry must be made in Thumb state. |