diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/arm64/booting.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/arm64/booting.rst')
-rw-r--r-- | Documentation/arm64/booting.rst | 431 |
1 files changed, 431 insertions, 0 deletions
diff --git a/Documentation/arm64/booting.rst b/Documentation/arm64/booting.rst new file mode 100644 index 000000000..ffeccdd6b --- /dev/null +++ b/Documentation/arm64/booting.rst @@ -0,0 +1,431 @@ +===================== +Booting AArch64 Linux +===================== + +Author: Will Deacon <will.deacon@arm.com> + +Date : 07 September 2012 + +This document is based on the ARM booting document by Russell King and +is relevant to all public releases of the AArch64 Linux kernel. + +The AArch64 exception model is made up of a number of exception levels +(EL0 - EL3), with EL0, EL1 and EL2 having a secure and a non-secure +counterpart. EL2 is the hypervisor level, EL3 is the highest priority +level and exists only in secure mode. Both are architecturally optional. + +For the purposes of this document, we will use the term `boot loader` +simply to define all software that executes on the CPU(s) before control +is passed to the Linux kernel. This may include secure monitor and +hypervisor code, or it may just be a handful of instructions for +preparing a minimal boot environment. + +Essentially, the boot loader should provide (as a minimum) the +following: + +1. Setup and initialise the RAM +2. Setup the device tree +3. Decompress the kernel image +4. Call the kernel image + + +1. Setup and initialise RAM +--------------------------- + +Requirement: MANDATORY + +The boot loader is expected to find and initialise all RAM that the +kernel will use for volatile data storage in the system. It performs +this in a machine dependent manner. (It may use internal algorithms +to automatically locate and size all RAM, or it may use knowledge of +the RAM in the machine, or any other method the boot loader designer +sees fit.) + + +2. Setup the device tree +------------------------- + +Requirement: MANDATORY + +The device tree blob (dtb) must be placed on an 8-byte boundary and must +not exceed 2 megabytes in size. Since the dtb will be mapped cacheable +using blocks of up to 2 megabytes in size, it must not be placed within +any 2M region which must be mapped with any specific attributes. + +NOTE: versions prior to v4.2 also require that the DTB be placed within +the 512 MB region starting at text_offset bytes below the kernel Image. + +3. Decompress the kernel image +------------------------------ + +Requirement: OPTIONAL + +The AArch64 kernel does not currently provide a decompressor and +therefore requires decompression (gzip etc.) to be performed by the boot +loader if a compressed Image target (e.g. Image.gz) is used. For +bootloaders that do not implement this requirement, the uncompressed +Image target is available instead. + + +4. Call the kernel image +------------------------ + +Requirement: MANDATORY + +The decompressed kernel image contains a 64-byte header as follows:: + + u32 code0; /* Executable code */ + u32 code1; /* Executable code */ + u64 text_offset; /* Image load offset, little endian */ + u64 image_size; /* Effective Image size, little endian */ + u64 flags; /* kernel flags, little endian */ + u64 res2 = 0; /* reserved */ + u64 res3 = 0; /* reserved */ + u64 res4 = 0; /* reserved */ + u32 magic = 0x644d5241; /* Magic number, little endian, "ARM\x64" */ + u32 res5; /* reserved (used for PE COFF offset) */ + + +Header notes: + +- As of v3.17, all fields are little endian unless stated otherwise. + +- code0/code1 are responsible for branching to stext. + +- when booting through EFI, code0/code1 are initially skipped. + res5 is an offset to the PE header and the PE header has the EFI + entry point (efi_stub_entry). When the stub has done its work, it + jumps to code0 to resume the normal boot process. + +- Prior to v3.17, the endianness of text_offset was not specified. In + these cases image_size is zero and text_offset is 0x80000 in the + endianness of the kernel. Where image_size is non-zero image_size is + little-endian and must be respected. Where image_size is zero, + text_offset can be assumed to be 0x80000. + +- The flags field (introduced in v3.17) is a little-endian 64-bit field + composed as follows: + + ============= =============================================================== + Bit 0 Kernel endianness. 1 if BE, 0 if LE. + Bit 1-2 Kernel Page size. + + * 0 - Unspecified. + * 1 - 4K + * 2 - 16K + * 3 - 64K + Bit 3 Kernel physical placement + + 0 + 2MB aligned base should be as close as possible + to the base of DRAM, since memory below it is not + accessible via the linear mapping + 1 + 2MB aligned base such that all image_size bytes + counted from the start of the image are within + the 48-bit addressable range of physical memory + Bits 4-63 Reserved. + ============= =============================================================== + +- When image_size is zero, a bootloader should attempt to keep as much + memory as possible free for use by the kernel immediately after the + end of the kernel image. The amount of space required will vary + depending on selected features, and is effectively unbound. + +The Image must be placed text_offset bytes from a 2MB aligned base +address anywhere in usable system RAM and called there. The region +between the 2 MB aligned base address and the start of the image has no +special significance to the kernel, and may be used for other purposes. +At least image_size bytes from the start of the image must be free for +use by the kernel. +NOTE: versions prior to v4.6 cannot make use of memory below the +physical offset of the Image so it is recommended that the Image be +placed as close as possible to the start of system RAM. + +If an initrd/initramfs is passed to the kernel at boot, it must reside +entirely within a 1 GB aligned physical memory window of up to 32 GB in +size that fully covers the kernel Image as well. + +Any memory described to the kernel (even that below the start of the +image) which is not marked as reserved from the kernel (e.g., with a +memreserve region in the device tree) will be considered as available to +the kernel. + +Before jumping into the kernel, the following conditions must be met: + +- Quiesce all DMA capable devices so that memory does not get + corrupted by bogus network packets or disk data. This will save + you many hours of debug. + +- Primary CPU general-purpose register settings: + + - x0 = physical address of device tree blob (dtb) in system RAM. + - x1 = 0 (reserved for future use) + - x2 = 0 (reserved for future use) + - x3 = 0 (reserved for future use) + +- CPU mode + + All forms of interrupts must be masked in PSTATE.DAIF (Debug, SError, + IRQ and FIQ). + The CPU must be in non-secure state, either in EL2 (RECOMMENDED in order + to have access to the virtualisation extensions), or in EL1. + +- Caches, MMUs + + The MMU must be off. + + The instruction cache may be on or off, and must not hold any stale + entries corresponding to the loaded kernel image. + + The address range corresponding to the loaded kernel image must be + cleaned to the PoC. In the presence of a system cache or other + coherent masters with caches enabled, this will typically require + cache maintenance by VA rather than set/way operations. + System caches which respect the architected cache maintenance by VA + operations must be configured and may be enabled. + System caches which do not respect architected cache maintenance by VA + operations (not recommended) must be configured and disabled. + +- Architected timers + + CNTFRQ must be programmed with the timer frequency and CNTVOFF must + be programmed with a consistent value on all CPUs. If entering the + kernel at EL1, CNTHCTL_EL2 must have EL1PCTEN (bit 0) set where + available. + +- Coherency + + All CPUs to be booted by the kernel must be part of the same coherency + domain on entry to the kernel. This may require IMPLEMENTATION DEFINED + initialisation to enable the receiving of maintenance operations on + each CPU. + +- System registers + + All writable architected system registers at or below the exception + level where the kernel image will be entered must be initialised by + software at a higher exception level to prevent execution in an UNKNOWN + state. + + For all systems: + - If EL3 is present: + + - SCR_EL3.FIQ must have the same value across all CPUs the kernel is + executing on. + - The value of SCR_EL3.FIQ must be the same as the one present at boot + time whenever the kernel is executing. + + - If EL3 is present and the kernel is entered at EL2: + + - SCR_EL3.HCE (bit 8) must be initialised to 0b1. + + For systems with a GICv3 interrupt controller to be used in v3 mode: + - If EL3 is present: + + - ICC_SRE_EL3.Enable (bit 3) must be initialised to 0b1. + - ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1. + - ICC_CTLR_EL3.PMHE (bit 6) must be set to the same value across + all CPUs the kernel is executing on, and must stay constant + for the lifetime of the kernel. + + - If the kernel is entered at EL1: + + - ICC.SRE_EL2.Enable (bit 3) must be initialised to 0b1 + - ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b1. + + - The DT or ACPI tables must describe a GICv3 interrupt controller. + + For systems with a GICv3 interrupt controller to be used in + compatibility (v2) mode: + + - If EL3 is present: + + ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b0. + + - If the kernel is entered at EL1: + + ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b0. + + - The DT or ACPI tables must describe a GICv2 interrupt controller. + + For CPUs with pointer authentication functionality: + + - If EL3 is present: + + - SCR_EL3.APK (bit 16) must be initialised to 0b1 + - SCR_EL3.API (bit 17) must be initialised to 0b1 + + - If the kernel is entered at EL1: + + - HCR_EL2.APK (bit 40) must be initialised to 0b1 + - HCR_EL2.API (bit 41) must be initialised to 0b1 + + For CPUs with Activity Monitors Unit v1 (AMUv1) extension present: + + - If EL3 is present: + + - CPTR_EL3.TAM (bit 30) must be initialised to 0b0 + - CPTR_EL2.TAM (bit 30) must be initialised to 0b0 + - AMCNTENSET0_EL0 must be initialised to 0b1111 + - AMCNTENSET1_EL0 must be initialised to a platform specific value + having 0b1 set for the corresponding bit for each of the auxiliary + counters present. + + - If the kernel is entered at EL1: + + - AMCNTENSET0_EL0 must be initialised to 0b1111 + - AMCNTENSET1_EL0 must be initialised to a platform specific value + having 0b1 set for the corresponding bit for each of the auxiliary + counters present. + + For CPUs with the Fine Grained Traps (FEAT_FGT) extension present: + + - If EL3 is present and the kernel is entered at EL2: + + - SCR_EL3.FGTEn (bit 27) must be initialised to 0b1. + + For CPUs with support for HCRX_EL2 (FEAT_HCX) present: + + - If EL3 is present and the kernel is entered at EL2: + + - SCR_EL3.HXEn (bit 38) must be initialised to 0b1. + + For CPUs with Advanced SIMD and floating point support: + + - If EL3 is present: + + - CPTR_EL3.TFP (bit 10) must be initialised to 0b0. + + - If EL2 is present and the kernel is entered at EL1: + + - CPTR_EL2.TFP (bit 10) must be initialised to 0b0. + + For CPUs with the Scalable Vector Extension (FEAT_SVE) present: + + - if EL3 is present: + + - CPTR_EL3.EZ (bit 8) must be initialised to 0b1. + + - ZCR_EL3.LEN must be initialised to the same value for all CPUs the + kernel is executed on. + + - If the kernel is entered at EL1 and EL2 is present: + + - CPTR_EL2.TZ (bit 8) must be initialised to 0b0. + + - CPTR_EL2.ZEN (bits 17:16) must be initialised to 0b11. + + - ZCR_EL2.LEN must be initialised to the same value for all CPUs the + kernel will execute on. + + For CPUs with the Scalable Matrix Extension (FEAT_SME): + + - If EL3 is present: + + - CPTR_EL3.ESM (bit 12) must be initialised to 0b1. + + - SCR_EL3.EnTP2 (bit 41) must be initialised to 0b1. + + - SMCR_EL3.LEN must be initialised to the same value for all CPUs the + kernel will execute on. + + - If the kernel is entered at EL1 and EL2 is present: + + - CPTR_EL2.TSM (bit 12) must be initialised to 0b0. + + - CPTR_EL2.SMEN (bits 25:24) must be initialised to 0b11. + + - SCTLR_EL2.EnTP2 (bit 60) must be initialised to 0b1. + + - SMCR_EL2.LEN must be initialised to the same value for all CPUs the + kernel will execute on. + + - HWFGRTR_EL2.nTPIDR2_EL0 (bit 55) must be initialised to 0b01. + + - HWFGWTR_EL2.nTPIDR2_EL0 (bit 55) must be initialised to 0b01. + + - HWFGRTR_EL2.nSMPRI_EL1 (bit 54) must be initialised to 0b01. + + - HWFGWTR_EL2.nSMPRI_EL1 (bit 54) must be initialised to 0b01. + + For CPUs with the Scalable Matrix Extension FA64 feature (FEAT_SME_FA64): + + - If EL3 is present: + + - SMCR_EL3.FA64 (bit 31) must be initialised to 0b1. + + - If the kernel is entered at EL1 and EL2 is present: + + - SMCR_EL2.FA64 (bit 31) must be initialised to 0b1. + + For CPUs with the Memory Tagging Extension feature (FEAT_MTE2): + + - If EL3 is present: + + - SCR_EL3.ATA (bit 26) must be initialised to 0b1. + + - If the kernel is entered at EL1 and EL2 is present: + + - HCR_EL2.ATA (bit 56) must be initialised to 0b1. + + For CPUs with the Scalable Matrix Extension version 2 (FEAT_SME2): + + - If EL3 is present: + + - SMCR_EL3.EZT0 (bit 30) must be initialised to 0b1. + + - If the kernel is entered at EL1 and EL2 is present: + + - SMCR_EL2.EZT0 (bit 30) must be initialised to 0b1. + +The requirements described above for CPU mode, caches, MMUs, architected +timers, coherency and system registers apply to all CPUs. All CPUs must +enter the kernel in the same exception level. Where the values documented +disable traps it is permissible for these traps to be enabled so long as +those traps are handled transparently by higher exception levels as though +the values documented were set. + +The boot loader is expected to enter the kernel on each CPU in the +following manner: + +- The primary CPU must jump directly to the first instruction of the + kernel image. The device tree blob passed by this CPU must contain + an 'enable-method' property for each cpu node. The supported + enable-methods are described below. + + It is expected that the bootloader will generate these device tree + properties and insert them into the blob prior to kernel entry. + +- CPUs with a "spin-table" enable-method must have a 'cpu-release-addr' + property in their cpu node. This property identifies a + naturally-aligned 64-bit zero-initalised memory location. + + These CPUs should spin outside of the kernel in a reserved area of + memory (communicated to the kernel by a /memreserve/ region in the + device tree) polling their cpu-release-addr location, which must be + contained in the reserved region. A wfe instruction may be inserted + to reduce the overhead of the busy-loop and a sev will be issued by + the primary CPU. When a read of the location pointed to by the + cpu-release-addr returns a non-zero value, the CPU must jump to this + value. The value will be written as a single 64-bit little-endian + value, so CPUs must convert the read value to their native endianness + before jumping to it. + +- CPUs with a "psci" enable method should remain outside of + the kernel (i.e. outside of the regions of memory described to the + kernel in the memory node, or in a reserved area of memory described + to the kernel by a /memreserve/ region in the device tree). The + kernel will issue CPU_ON calls as described in ARM document number ARM + DEN 0022A ("Power State Coordination Interface System Software on ARM + processors") to bring CPUs into the kernel. + + The device tree should contain a 'psci' node, as described in + Documentation/devicetree/bindings/arm/psci.yaml. + +- Secondary CPU general-purpose register settings + + - x0 = 0 (reserved for future use) + - x1 = 0 (reserved for future use) + - x2 = 0 (reserved for future use) + - x3 = 0 (reserved for future use) |