aboutsummaryrefslogtreecommitdiff
path: root/Documentation/bpf/graph_ds_impl.rst
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/bpf/graph_ds_impl.rst
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'Documentation/bpf/graph_ds_impl.rst')
-rw-r--r--Documentation/bpf/graph_ds_impl.rst267
1 files changed, 267 insertions, 0 deletions
diff --git a/Documentation/bpf/graph_ds_impl.rst b/Documentation/bpf/graph_ds_impl.rst
new file mode 100644
index 000000000..61274622b
--- /dev/null
+++ b/Documentation/bpf/graph_ds_impl.rst
@@ -0,0 +1,267 @@
+=========================
+BPF Graph Data Structures
+=========================
+
+This document describes implementation details of new-style "graph" data
+structures (linked_list, rbtree), with particular focus on the verifier's
+implementation of semantics specific to those data structures.
+
+Although no specific verifier code is referred to in this document, the document
+assumes that the reader has general knowledge of BPF verifier internals, BPF
+maps, and BPF program writing.
+
+Note that the intent of this document is to describe the current state of
+these graph data structures. **No guarantees** of stability for either
+semantics or APIs are made or implied here.
+
+.. contents::
+ :local:
+ :depth: 2
+
+Introduction
+------------
+
+The BPF map API has historically been the main way to expose data structures
+of various types for use within BPF programs. Some data structures fit naturally
+with the map API (HASH, ARRAY), others less so. Consequentially, programs
+interacting with the latter group of data structures can be hard to parse
+for kernel programmers without previous BPF experience.
+
+Luckily, some restrictions which necessitated the use of BPF map semantics are
+no longer relevant. With the introduction of kfuncs, kptrs, and the any-context
+BPF allocator, it is now possible to implement BPF data structures whose API
+and semantics more closely match those exposed to the rest of the kernel.
+
+Two such data structures - linked_list and rbtree - have many verification
+details in common. Because both have "root"s ("head" for linked_list) and
+"node"s, the verifier code and this document refer to common functionality
+as "graph_api", "graph_root", "graph_node", etc.
+
+Unless otherwise stated, examples and semantics below apply to both graph data
+structures.
+
+Unstable API
+------------
+
+Data structures implemented using the BPF map API have historically used BPF
+helper functions - either standard map API helpers like ``bpf_map_update_elem``
+or map-specific helpers. The new-style graph data structures instead use kfuncs
+to define their manipulation helpers. Because there are no stability guarantees
+for kfuncs, the API and semantics for these data structures can be evolved in
+a way that breaks backwards compatibility if necessary.
+
+Root and node types for the new data structures are opaquely defined in the
+``uapi/linux/bpf.h`` header.
+
+Locking
+-------
+
+The new-style data structures are intrusive and are defined similarly to their
+vanilla kernel counterparts:
+
+.. code-block:: c
+
+ struct node_data {
+ long key;
+ long data;
+ struct bpf_rb_node node;
+ };
+
+ struct bpf_spin_lock glock;
+ struct bpf_rb_root groot __contains(node_data, node);
+
+The "root" type for both linked_list and rbtree expects to be in a map_value
+which also contains a ``bpf_spin_lock`` - in the above example both global
+variables are placed in a single-value arraymap. The verifier considers this
+spin_lock to be associated with the ``bpf_rb_root`` by virtue of both being in
+the same map_value and will enforce that the correct lock is held when
+verifying BPF programs that manipulate the tree. Since this lock checking
+happens at verification time, there is no runtime penalty.
+
+Non-owning references
+---------------------
+
+**Motivation**
+
+Consider the following BPF code:
+
+.. code-block:: c
+
+ struct node_data *n = bpf_obj_new(typeof(*n)); /* ACQUIRED */
+
+ bpf_spin_lock(&lock);
+
+ bpf_rbtree_add(&tree, n); /* PASSED */
+
+ bpf_spin_unlock(&lock);
+
+From the verifier's perspective, the pointer ``n`` returned from ``bpf_obj_new``
+has type ``PTR_TO_BTF_ID | MEM_ALLOC``, with a ``btf_id`` of
+``struct node_data`` and a nonzero ``ref_obj_id``. Because it holds ``n``, the
+program has ownership of the pointee's (object pointed to by ``n``) lifetime.
+The BPF program must pass off ownership before exiting - either via
+``bpf_obj_drop``, which ``free``'s the object, or by adding it to ``tree`` with
+``bpf_rbtree_add``.
+
+(``ACQUIRED`` and ``PASSED`` comments in the example denote statements where
+"ownership is acquired" and "ownership is passed", respectively)
+
+What should the verifier do with ``n`` after ownership is passed off? If the
+object was ``free``'d with ``bpf_obj_drop`` the answer is obvious: the verifier
+should reject programs which attempt to access ``n`` after ``bpf_obj_drop`` as
+the object is no longer valid. The underlying memory may have been reused for
+some other allocation, unmapped, etc.
+
+When ownership is passed to ``tree`` via ``bpf_rbtree_add`` the answer is less
+obvious. The verifier could enforce the same semantics as for ``bpf_obj_drop``,
+but that would result in programs with useful, common coding patterns being
+rejected, e.g.:
+
+.. code-block:: c
+
+ int x;
+ struct node_data *n = bpf_obj_new(typeof(*n)); /* ACQUIRED */
+
+ bpf_spin_lock(&lock);
+
+ bpf_rbtree_add(&tree, n); /* PASSED */
+ x = n->data;
+ n->data = 42;
+
+ bpf_spin_unlock(&lock);
+
+Both the read from and write to ``n->data`` would be rejected. The verifier
+can do better, though, by taking advantage of two details:
+
+ * Graph data structure APIs can only be used when the ``bpf_spin_lock``
+ associated with the graph root is held
+
+ * Both graph data structures have pointer stability
+
+ * Because graph nodes are allocated with ``bpf_obj_new`` and
+ adding / removing from the root involves fiddling with the
+ ``bpf_{list,rb}_node`` field of the node struct, a graph node will
+ remain at the same address after either operation.
+
+Because the associated ``bpf_spin_lock`` must be held by any program adding
+or removing, if we're in the critical section bounded by that lock, we know
+that no other program can add or remove until the end of the critical section.
+This combined with pointer stability means that, until the critical section
+ends, we can safely access the graph node through ``n`` even after it was used
+to pass ownership.
+
+The verifier considers such a reference a *non-owning reference*. The ref
+returned by ``bpf_obj_new`` is accordingly considered an *owning reference*.
+Both terms currently only have meaning in the context of graph nodes and API.
+
+**Details**
+
+Let's enumerate the properties of both types of references.
+
+*owning reference*
+
+ * This reference controls the lifetime of the pointee
+
+ * Ownership of pointee must be 'released' by passing it to some graph API
+ kfunc, or via ``bpf_obj_drop``, which ``free``'s the pointee
+
+ * If not released before program ends, verifier considers program invalid
+
+ * Access to the pointee's memory will not page fault
+
+*non-owning reference*
+
+ * This reference does not own the pointee
+
+ * It cannot be used to add the graph node to a graph root, nor ``free``'d via
+ ``bpf_obj_drop``
+
+ * No explicit control of lifetime, but can infer valid lifetime based on
+ non-owning ref existence (see explanation below)
+
+ * Access to the pointee's memory will not page fault
+
+From verifier's perspective non-owning references can only exist
+between spin_lock and spin_unlock. Why? After spin_unlock another program
+can do arbitrary operations on the data structure like removing and ``free``-ing
+via bpf_obj_drop. A non-owning ref to some chunk of memory that was remove'd,
+``free``'d, and reused via bpf_obj_new would point to an entirely different thing.
+Or the memory could go away.
+
+To prevent this logic violation all non-owning references are invalidated by the
+verifier after a critical section ends. This is necessary to ensure the "will
+not page fault" property of non-owning references. So if the verifier hasn't
+invalidated a non-owning ref, accessing it will not page fault.
+
+Currently ``bpf_obj_drop`` is not allowed in the critical section, so
+if there's a valid non-owning ref, we must be in a critical section, and can
+conclude that the ref's memory hasn't been dropped-and- ``free``'d or
+dropped-and-reused.
+
+Any reference to a node that is in an rbtree _must_ be non-owning, since
+the tree has control of the pointee's lifetime. Similarly, any ref to a node
+that isn't in rbtree _must_ be owning. This results in a nice property:
+graph API add / remove implementations don't need to check if a node
+has already been added (or already removed), as the ownership model
+allows the verifier to prevent such a state from being valid by simply checking
+types.
+
+However, pointer aliasing poses an issue for the above "nice property".
+Consider the following example:
+
+.. code-block:: c
+
+ struct node_data *n, *m, *o, *p;
+ n = bpf_obj_new(typeof(*n)); /* 1 */
+
+ bpf_spin_lock(&lock);
+
+ bpf_rbtree_add(&tree, n); /* 2 */
+ m = bpf_rbtree_first(&tree); /* 3 */
+
+ o = bpf_rbtree_remove(&tree, n); /* 4 */
+ p = bpf_rbtree_remove(&tree, m); /* 5 */
+
+ bpf_spin_unlock(&lock);
+
+ bpf_obj_drop(o);
+ bpf_obj_drop(p); /* 6 */
+
+Assume the tree is empty before this program runs. If we track verifier state
+changes here using numbers in above comments:
+
+ 1) n is an owning reference
+
+ 2) n is a non-owning reference, it's been added to the tree
+
+ 3) n and m are non-owning references, they both point to the same node
+
+ 4) o is an owning reference, n and m non-owning, all point to same node
+
+ 5) o and p are owning, n and m non-owning, all point to the same node
+
+ 6) a double-free has occurred, since o and p point to same node and o was
+ ``free``'d in previous statement
+
+States 4 and 5 violate our "nice property", as there are non-owning refs to
+a node which is not in an rbtree. Statement 5 will try to remove a node which
+has already been removed as a result of this violation. State 6 is a dangerous
+double-free.
+
+At a minimum we should prevent state 6 from being possible. If we can't also
+prevent state 5 then we must abandon our "nice property" and check whether a
+node has already been removed at runtime.
+
+We prevent both by generalizing the "invalidate non-owning references" behavior
+of ``bpf_spin_unlock`` and doing similar invalidation after
+``bpf_rbtree_remove``. The logic here being that any graph API kfunc which:
+
+ * takes an arbitrary node argument
+
+ * removes it from the data structure
+
+ * returns an owning reference to the removed node
+
+May result in a state where some other non-owning reference points to the same
+node. So ``remove``-type kfuncs must be considered a non-owning reference
+invalidation point as well.