diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/bpf/instruction-set.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/bpf/instruction-set.rst')
-rw-r--r-- | Documentation/bpf/instruction-set.rst | 388 |
1 files changed, 388 insertions, 0 deletions
diff --git a/Documentation/bpf/instruction-set.rst b/Documentation/bpf/instruction-set.rst new file mode 100644 index 000000000..af515de5f --- /dev/null +++ b/Documentation/bpf/instruction-set.rst @@ -0,0 +1,388 @@ +.. contents:: +.. sectnum:: + +======================================== +eBPF Instruction Set Specification, v1.0 +======================================== + +This document specifies version 1.0 of the eBPF instruction set. + +Documentation conventions +========================= + +For brevity, this document uses the type notion "u64", "u32", etc. +to mean an unsigned integer whose width is the specified number of bits. + +Registers and calling convention +================================ + +eBPF has 10 general purpose registers and a read-only frame pointer register, +all of which are 64-bits wide. + +The eBPF calling convention is defined as: + +* R0: return value from function calls, and exit value for eBPF programs +* R1 - R5: arguments for function calls +* R6 - R9: callee saved registers that function calls will preserve +* R10: read-only frame pointer to access stack + +R0 - R5 are scratch registers and eBPF programs needs to spill/fill them if +necessary across calls. + +Instruction encoding +==================== + +eBPF has two instruction encodings: + +* the basic instruction encoding, which uses 64 bits to encode an instruction +* the wide instruction encoding, which appends a second 64-bit immediate (i.e., + constant) value after the basic instruction for a total of 128 bits. + +The basic instruction encoding is as follows, where MSB and LSB mean the most significant +bits and least significant bits, respectively: + +============= ======= ======= ======= ============ +32 bits (MSB) 16 bits 4 bits 4 bits 8 bits (LSB) +============= ======= ======= ======= ============ +imm offset src_reg dst_reg opcode +============= ======= ======= ======= ============ + +**imm** + signed integer immediate value + +**offset** + signed integer offset used with pointer arithmetic + +**src_reg** + the source register number (0-10), except where otherwise specified + (`64-bit immediate instructions`_ reuse this field for other purposes) + +**dst_reg** + destination register number (0-10) + +**opcode** + operation to perform + +Note that most instructions do not use all of the fields. +Unused fields shall be cleared to zero. + +As discussed below in `64-bit immediate instructions`_, a 64-bit immediate +instruction uses a 64-bit immediate value that is constructed as follows. +The 64 bits following the basic instruction contain a pseudo instruction +using the same format but with opcode, dst_reg, src_reg, and offset all set to zero, +and imm containing the high 32 bits of the immediate value. + +================= ================== +64 bits (MSB) 64 bits (LSB) +================= ================== +basic instruction pseudo instruction +================= ================== + +Thus the 64-bit immediate value is constructed as follows: + + imm64 = (next_imm << 32) | imm + +where 'next_imm' refers to the imm value of the pseudo instruction +following the basic instruction. + +Instruction classes +------------------- + +The three LSB bits of the 'opcode' field store the instruction class: + +========= ===== =============================== =================================== +class value description reference +========= ===== =============================== =================================== +BPF_LD 0x00 non-standard load operations `Load and store instructions`_ +BPF_LDX 0x01 load into register operations `Load and store instructions`_ +BPF_ST 0x02 store from immediate operations `Load and store instructions`_ +BPF_STX 0x03 store from register operations `Load and store instructions`_ +BPF_ALU 0x04 32-bit arithmetic operations `Arithmetic and jump instructions`_ +BPF_JMP 0x05 64-bit jump operations `Arithmetic and jump instructions`_ +BPF_JMP32 0x06 32-bit jump operations `Arithmetic and jump instructions`_ +BPF_ALU64 0x07 64-bit arithmetic operations `Arithmetic and jump instructions`_ +========= ===== =============================== =================================== + +Arithmetic and jump instructions +================================ + +For arithmetic and jump instructions (``BPF_ALU``, ``BPF_ALU64``, ``BPF_JMP`` and +``BPF_JMP32``), the 8-bit 'opcode' field is divided into three parts: + +============== ====== ================= +4 bits (MSB) 1 bit 3 bits (LSB) +============== ====== ================= +code source instruction class +============== ====== ================= + +**code** + the operation code, whose meaning varies by instruction class + +**source** + the source operand location, which unless otherwise specified is one of: + + ====== ===== ============================================== + source value description + ====== ===== ============================================== + BPF_K 0x00 use 32-bit 'imm' value as source operand + BPF_X 0x08 use 'src_reg' register value as source operand + ====== ===== ============================================== + +**instruction class** + the instruction class (see `Instruction classes`_) + +Arithmetic instructions +----------------------- + +``BPF_ALU`` uses 32-bit wide operands while ``BPF_ALU64`` uses 64-bit wide operands for +otherwise identical operations. +The 'code' field encodes the operation as below, where 'src' and 'dst' refer +to the values of the source and destination registers, respectively. + +======== ===== ========================================================== +code value description +======== ===== ========================================================== +BPF_ADD 0x00 dst += src +BPF_SUB 0x10 dst -= src +BPF_MUL 0x20 dst \*= src +BPF_DIV 0x30 dst = (src != 0) ? (dst / src) : 0 +BPF_OR 0x40 dst \|= src +BPF_AND 0x50 dst &= src +BPF_LSH 0x60 dst <<= src +BPF_RSH 0x70 dst >>= src +BPF_NEG 0x80 dst = ~src +BPF_MOD 0x90 dst = (src != 0) ? (dst % src) : dst +BPF_XOR 0xa0 dst ^= src +BPF_MOV 0xb0 dst = src +BPF_ARSH 0xc0 sign extending shift right +BPF_END 0xd0 byte swap operations (see `Byte swap instructions`_ below) +======== ===== ========================================================== + +Underflow and overflow are allowed during arithmetic operations, meaning +the 64-bit or 32-bit value will wrap. If eBPF program execution would +result in division by zero, the destination register is instead set to zero. +If execution would result in modulo by zero, for ``BPF_ALU64`` the value of +the destination register is unchanged whereas for ``BPF_ALU`` the upper +32 bits of the destination register are zeroed. + +``BPF_ADD | BPF_X | BPF_ALU`` means:: + + dst = (u32) ((u32) dst + (u32) src) + +where '(u32)' indicates that the upper 32 bits are zeroed. + +``BPF_ADD | BPF_X | BPF_ALU64`` means:: + + dst = dst + src + +``BPF_XOR | BPF_K | BPF_ALU`` means:: + + dst = (u32) dst ^ (u32) imm32 + +``BPF_XOR | BPF_K | BPF_ALU64`` means:: + + dst = dst ^ imm32 + +Also note that the division and modulo operations are unsigned. Thus, for +``BPF_ALU``, 'imm' is first interpreted as an unsigned 32-bit value, whereas +for ``BPF_ALU64``, 'imm' is first sign extended to 64 bits and the result +interpreted as an unsigned 64-bit value. There are no instructions for +signed division or modulo. + +Byte swap instructions +~~~~~~~~~~~~~~~~~~~~~~ + +The byte swap instructions use an instruction class of ``BPF_ALU`` and a 4-bit +'code' field of ``BPF_END``. + +The byte swap instructions operate on the destination register +only and do not use a separate source register or immediate value. + +The 1-bit source operand field in the opcode is used to select what byte +order the operation convert from or to: + +========= ===== ================================================= +source value description +========= ===== ================================================= +BPF_TO_LE 0x00 convert between host byte order and little endian +BPF_TO_BE 0x08 convert between host byte order and big endian +========= ===== ================================================= + +The 'imm' field encodes the width of the swap operations. The following widths +are supported: 16, 32 and 64. + +Examples: + +``BPF_ALU | BPF_TO_LE | BPF_END`` with imm = 16 means:: + + dst = htole16(dst) + +``BPF_ALU | BPF_TO_BE | BPF_END`` with imm = 64 means:: + + dst = htobe64(dst) + +Jump instructions +----------------- + +``BPF_JMP32`` uses 32-bit wide operands while ``BPF_JMP`` uses 64-bit wide operands for +otherwise identical operations. +The 'code' field encodes the operation as below: + +======== ===== ========================= ============ +code value description notes +======== ===== ========================= ============ +BPF_JA 0x00 PC += off BPF_JMP only +BPF_JEQ 0x10 PC += off if dst == src +BPF_JGT 0x20 PC += off if dst > src unsigned +BPF_JGE 0x30 PC += off if dst >= src unsigned +BPF_JSET 0x40 PC += off if dst & src +BPF_JNE 0x50 PC += off if dst != src +BPF_JSGT 0x60 PC += off if dst > src signed +BPF_JSGE 0x70 PC += off if dst >= src signed +BPF_CALL 0x80 function call +BPF_EXIT 0x90 function / program return BPF_JMP only +BPF_JLT 0xa0 PC += off if dst < src unsigned +BPF_JLE 0xb0 PC += off if dst <= src unsigned +BPF_JSLT 0xc0 PC += off if dst < src signed +BPF_JSLE 0xd0 PC += off if dst <= src signed +======== ===== ========================= ============ + +The eBPF program needs to store the return value into register R0 before doing a +BPF_EXIT. + + +Load and store instructions +=========================== + +For load and store instructions (``BPF_LD``, ``BPF_LDX``, ``BPF_ST``, and ``BPF_STX``), the +8-bit 'opcode' field is divided as: + +============ ====== ================= +3 bits (MSB) 2 bits 3 bits (LSB) +============ ====== ================= +mode size instruction class +============ ====== ================= + +The mode modifier is one of: + + ============= ===== ==================================== ============= + mode modifier value description reference + ============= ===== ==================================== ============= + BPF_IMM 0x00 64-bit immediate instructions `64-bit immediate instructions`_ + BPF_ABS 0x20 legacy BPF packet access (absolute) `Legacy BPF Packet access instructions`_ + BPF_IND 0x40 legacy BPF packet access (indirect) `Legacy BPF Packet access instructions`_ + BPF_MEM 0x60 regular load and store operations `Regular load and store operations`_ + BPF_ATOMIC 0xc0 atomic operations `Atomic operations`_ + ============= ===== ==================================== ============= + +The size modifier is one of: + + ============= ===== ===================== + size modifier value description + ============= ===== ===================== + BPF_W 0x00 word (4 bytes) + BPF_H 0x08 half word (2 bytes) + BPF_B 0x10 byte + BPF_DW 0x18 double word (8 bytes) + ============= ===== ===================== + +Regular load and store operations +--------------------------------- + +The ``BPF_MEM`` mode modifier is used to encode regular load and store +instructions that transfer data between a register and memory. + +``BPF_MEM | <size> | BPF_STX`` means:: + + *(size *) (dst + offset) = src + +``BPF_MEM | <size> | BPF_ST`` means:: + + *(size *) (dst + offset) = imm32 + +``BPF_MEM | <size> | BPF_LDX`` means:: + + dst = *(size *) (src + offset) + +Where size is one of: ``BPF_B``, ``BPF_H``, ``BPF_W``, or ``BPF_DW``. + +Atomic operations +----------------- + +Atomic operations are operations that operate on memory and can not be +interrupted or corrupted by other access to the same memory region +by other eBPF programs or means outside of this specification. + +All atomic operations supported by eBPF are encoded as store operations +that use the ``BPF_ATOMIC`` mode modifier as follows: + +* ``BPF_ATOMIC | BPF_W | BPF_STX`` for 32-bit operations +* ``BPF_ATOMIC | BPF_DW | BPF_STX`` for 64-bit operations +* 8-bit and 16-bit wide atomic operations are not supported. + +The 'imm' field is used to encode the actual atomic operation. +Simple atomic operation use a subset of the values defined to encode +arithmetic operations in the 'imm' field to encode the atomic operation: + +======== ===== =========== +imm value description +======== ===== =========== +BPF_ADD 0x00 atomic add +BPF_OR 0x40 atomic or +BPF_AND 0x50 atomic and +BPF_XOR 0xa0 atomic xor +======== ===== =========== + + +``BPF_ATOMIC | BPF_W | BPF_STX`` with 'imm' = BPF_ADD means:: + + *(u32 *)(dst + offset) += src + +``BPF_ATOMIC | BPF_DW | BPF_STX`` with 'imm' = BPF ADD means:: + + *(u64 *)(dst + offset) += src + +In addition to the simple atomic operations, there also is a modifier and +two complex atomic operations: + +=========== ================ =========================== +imm value description +=========== ================ =========================== +BPF_FETCH 0x01 modifier: return old value +BPF_XCHG 0xe0 | BPF_FETCH atomic exchange +BPF_CMPXCHG 0xf0 | BPF_FETCH atomic compare and exchange +=========== ================ =========================== + +The ``BPF_FETCH`` modifier is optional for simple atomic operations, and +always set for the complex atomic operations. If the ``BPF_FETCH`` flag +is set, then the operation also overwrites ``src`` with the value that +was in memory before it was modified. + +The ``BPF_XCHG`` operation atomically exchanges ``src`` with the value +addressed by ``dst + offset``. + +The ``BPF_CMPXCHG`` operation atomically compares the value addressed by +``dst + offset`` with ``R0``. If they match, the value addressed by +``dst + offset`` is replaced with ``src``. In either case, the +value that was at ``dst + offset`` before the operation is zero-extended +and loaded back to ``R0``. + +64-bit immediate instructions +----------------------------- + +Instructions with the ``BPF_IMM`` 'mode' modifier use the wide instruction +encoding for an extra imm64 value. + +There is currently only one such instruction. + +``BPF_LD | BPF_DW | BPF_IMM`` means:: + + dst = imm64 + + +Legacy BPF Packet access instructions +------------------------------------- + +eBPF previously introduced special instructions for access to packet data that were +carried over from classic BPF. However, these instructions are +deprecated and should no longer be used. |