aboutsummaryrefslogtreecommitdiff
path: root/Documentation/bpf/instruction-set.rst
diff options
context:
space:
mode:
authorLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
committerLibravatar Linus Torvalds <torvalds@linux-foundation.org>2023-02-21 18:24:12 -0800
commit5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch)
treecc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/bpf/instruction-set.rst
downloadlinux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz
linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski: "Core: - Add dedicated kmem_cache for typical/small skb->head, avoid having to access struct page at kfree time, and improve memory use. - Introduce sysctl to set default RPS configuration for new netdevs. - Define Netlink protocol specification format which can be used to describe messages used by each family and auto-generate parsers. Add tools for generating kernel data structures and uAPI headers. - Expose all net/core sysctls inside netns. - Remove 4s sleep in netpoll if carrier is instantly detected on boot. - Add configurable limit of MDB entries per port, and port-vlan. - Continue populating drop reasons throughout the stack. - Retire a handful of legacy Qdiscs and classifiers. Protocols: - Support IPv4 big TCP (TSO frames larger than 64kB). - Add IP_LOCAL_PORT_RANGE socket option, to control local port range on socket by socket basis. - Track and report in procfs number of MPTCP sockets used. - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path manager. - IPv6: don't check net.ipv6.route.max_size and rely on garbage collection to free memory (similarly to IPv4). - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986). - ICMP: add per-rate limit counters. - Add support for user scanning requests in ieee802154. - Remove static WEP support. - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate reporting. - WiFi 7 EHT channel puncturing support (client & AP). BPF: - Add a rbtree data structure following the "next-gen data structure" precedent set by recently added linked list, that is, by using kfunc + kptr instead of adding a new BPF map type. - Expose XDP hints via kfuncs with initial support for RX hash and timestamp metadata. - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better support decap on GRE tunnel devices not operating in collect metadata. - Improve x86 JIT's codegen for PROBE_MEM runtime error checks. - Remove the need for trace_printk_lock for bpf_trace_printk and bpf_trace_vprintk helpers. - Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case. - Significantly reduce the search time for module symbols by livepatch and BPF. - Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals. - Add support for BPF trampoline on s390x and riscv64. - Add capability to export the XDP features supported by the NIC. - Add __bpf_kfunc tag for marking kernel functions as kfuncs. - Add cgroup.memory=nobpf kernel parameter option to disable BPF memory accounting for container environments. Netfilter: - Remove the CLUSTERIP target. It has been marked as obsolete for years, and we still have WARN splats wrt races of the out-of-band /proc interface installed by this target. - Add 'destroy' commands to nf_tables. They are identical to the existing 'delete' commands, but do not return an error if the referenced object (set, chain, rule...) did not exist. Driver API: - Improve cpumask_local_spread() locality to help NICs set the right IRQ affinity on AMD platforms. - Separate C22 and C45 MDIO bus transactions more clearly. - Introduce new DCB table to control DSCP rewrite on egress. - Support configuration of Physical Layer Collision Avoidance (PLCA) Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of shared medium Ethernet. - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing preemption of low priority frames by high priority frames. - Add support for controlling MACSec offload using netlink SET. - Rework devlink instance refcounts to allow registration and de-registration under the instance lock. Split the code into multiple files, drop some of the unnecessarily granular locks and factor out common parts of netlink operation handling. - Add TX frame aggregation parameters (for USB drivers). - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning messages with notifications for debug. - Allow offloading of UDP NEW connections via act_ct. - Add support for per action HW stats in TC. - Support hardware miss to TC action (continue processing in SW from a specific point in the action chain). - Warn if old Wireless Extension user space interface is used with modern cfg80211/mac80211 drivers. Do not support Wireless Extensions for Wi-Fi 7 devices at all. Everyone should switch to using nl80211 interface instead. - Improve the CAN bit timing configuration. Use extack to return error messages directly to user space, update the SJW handling, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. New hardware / drivers: - Ethernet: - nVidia BlueField-3 support (control traffic driver) - Ethernet support for imx93 SoCs - Motorcomm yt8531 gigabit Ethernet PHY - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA) - Microchip LAN8841 PHY (incl. cable diagnostics and PTP) - Amlogic gxl MDIO mux - WiFi: - RealTek RTL8188EU (rtl8xxxu) - Qualcomm Wi-Fi 7 devices (ath12k) - CAN: - Renesas R-Car V4H Drivers: - Bluetooth: - Set Per Platform Antenna Gain (PPAG) for Intel controllers. - Ethernet NICs: - Intel (1G, igc): - support TSN / Qbv / packet scheduling features of i226 model - Intel (100G, ice): - use GNSS subsystem instead of TTY - multi-buffer XDP support - extend support for GPIO pins to E823 devices - nVidia/Mellanox: - update the shared buffer configuration on PFC commands - implement PTP adjphase function for HW offset control - TC support for Geneve and GRE with VF tunnel offload - more efficient crypto key management method - multi-port eswitch support - Netronome/Corigine: - add DCB IEEE support - support IPsec offloading for NFP3800 - Freescale/NXP (enetc): - support XDP_REDIRECT for XDP non-linear buffers - improve reconfig, avoid link flap and waiting for idle - support MAC Merge layer - Other NICs: - sfc/ef100: add basic devlink support for ef100 - ionic: rx_push mode operation (writing descriptors via MMIO) - bnxt: use the auxiliary bus abstraction for RDMA - r8169: disable ASPM and reset bus in case of tx timeout - cpsw: support QSGMII mode for J721e CPSW9G - cpts: support pulse-per-second output - ngbe: add an mdio bus driver - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing - r8152: handle devices with FW with NCM support - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation - virtio-net: support multi buffer XDP - virtio/vsock: replace virtio_vsock_pkt with sk_buff - tsnep: XDP support - Ethernet high-speed switches: - nVidia/Mellanox (mlxsw): - add support for latency TLV (in FW control messages) - Microchip (sparx5): - separate explicit and implicit traffic forwarding rules, make the implicit rules always active - add support for egress DSCP rewrite - IS0 VCAP support (Ingress Classification) - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.) - ES2 VCAP support (Egress Access Control) - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1) - Ethernet embedded switches: - Marvell (mv88e6xxx): - add MAB (port auth) offload support - enable PTP receive for mv88e6390 - NXP (ocelot): - support MAC Merge layer - support for the the vsc7512 internal copper phys - Microchip: - lan9303: convert to PHYLINK - lan966x: support TC flower filter statistics - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x - lan937x: support Credit Based Shaper configuration - ksz9477: support Energy Efficient Ethernet - other: - qca8k: convert to regmap read/write API, use bulk operations - rswitch: Improve TX timestamp accuracy - Intel WiFi (iwlwifi): - EHT (Wi-Fi 7) rate reporting - STEP equalizer support: transfer some STEP (connection to radio on platforms with integrated wifi) related parameters from the BIOS to the firmware. - Qualcomm 802.11ax WiFi (ath11k): - IPQ5018 support - Fine Timing Measurement (FTM) responder role support - channel 177 support - MediaTek WiFi (mt76): - per-PHY LED support - mt7996: EHT (Wi-Fi 7) support - Wireless Ethernet Dispatch (WED) reset support - switch to using page pool allocator - RealTek WiFi (rtw89): - support new version of Bluetooth co-existance - Mobile: - rmnet: support TX aggregation" * tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits) page_pool: add a comment explaining the fragment counter usage net: ethtool: fix __ethtool_dev_mm_supported() implementation ethtool: pse-pd: Fix double word in comments xsk: add linux/vmalloc.h to xsk.c sefltests: netdevsim: wait for devlink instance after netns removal selftest: fib_tests: Always cleanup before exit net/mlx5e: Align IPsec ASO result memory to be as required by hardware net/mlx5e: TC, Set CT miss to the specific ct action instance net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG net/mlx5: Refactor tc miss handling to a single function net/mlx5: Kconfig: Make tc offload depend on tc skb extension net/sched: flower: Support hardware miss to tc action net/sched: flower: Move filter handle initialization earlier net/sched: cls_api: Support hardware miss to tc action net/sched: Rename user cookie and act cookie sfc: fix builds without CONFIG_RTC_LIB sfc: clean up some inconsistent indentings net/mlx4_en: Introduce flexible array to silence overflow warning net: lan966x: Fix possible deadlock inside PTP net/ulp: Remove redundant ->clone() test in inet_clone_ulp(). ...
Diffstat (limited to 'Documentation/bpf/instruction-set.rst')
-rw-r--r--Documentation/bpf/instruction-set.rst388
1 files changed, 388 insertions, 0 deletions
diff --git a/Documentation/bpf/instruction-set.rst b/Documentation/bpf/instruction-set.rst
new file mode 100644
index 000000000..af515de5f
--- /dev/null
+++ b/Documentation/bpf/instruction-set.rst
@@ -0,0 +1,388 @@
+.. contents::
+.. sectnum::
+
+========================================
+eBPF Instruction Set Specification, v1.0
+========================================
+
+This document specifies version 1.0 of the eBPF instruction set.
+
+Documentation conventions
+=========================
+
+For brevity, this document uses the type notion "u64", "u32", etc.
+to mean an unsigned integer whose width is the specified number of bits.
+
+Registers and calling convention
+================================
+
+eBPF has 10 general purpose registers and a read-only frame pointer register,
+all of which are 64-bits wide.
+
+The eBPF calling convention is defined as:
+
+* R0: return value from function calls, and exit value for eBPF programs
+* R1 - R5: arguments for function calls
+* R6 - R9: callee saved registers that function calls will preserve
+* R10: read-only frame pointer to access stack
+
+R0 - R5 are scratch registers and eBPF programs needs to spill/fill them if
+necessary across calls.
+
+Instruction encoding
+====================
+
+eBPF has two instruction encodings:
+
+* the basic instruction encoding, which uses 64 bits to encode an instruction
+* the wide instruction encoding, which appends a second 64-bit immediate (i.e.,
+ constant) value after the basic instruction for a total of 128 bits.
+
+The basic instruction encoding is as follows, where MSB and LSB mean the most significant
+bits and least significant bits, respectively:
+
+============= ======= ======= ======= ============
+32 bits (MSB) 16 bits 4 bits 4 bits 8 bits (LSB)
+============= ======= ======= ======= ============
+imm offset src_reg dst_reg opcode
+============= ======= ======= ======= ============
+
+**imm**
+ signed integer immediate value
+
+**offset**
+ signed integer offset used with pointer arithmetic
+
+**src_reg**
+ the source register number (0-10), except where otherwise specified
+ (`64-bit immediate instructions`_ reuse this field for other purposes)
+
+**dst_reg**
+ destination register number (0-10)
+
+**opcode**
+ operation to perform
+
+Note that most instructions do not use all of the fields.
+Unused fields shall be cleared to zero.
+
+As discussed below in `64-bit immediate instructions`_, a 64-bit immediate
+instruction uses a 64-bit immediate value that is constructed as follows.
+The 64 bits following the basic instruction contain a pseudo instruction
+using the same format but with opcode, dst_reg, src_reg, and offset all set to zero,
+and imm containing the high 32 bits of the immediate value.
+
+================= ==================
+64 bits (MSB) 64 bits (LSB)
+================= ==================
+basic instruction pseudo instruction
+================= ==================
+
+Thus the 64-bit immediate value is constructed as follows:
+
+ imm64 = (next_imm << 32) | imm
+
+where 'next_imm' refers to the imm value of the pseudo instruction
+following the basic instruction.
+
+Instruction classes
+-------------------
+
+The three LSB bits of the 'opcode' field store the instruction class:
+
+========= ===== =============================== ===================================
+class value description reference
+========= ===== =============================== ===================================
+BPF_LD 0x00 non-standard load operations `Load and store instructions`_
+BPF_LDX 0x01 load into register operations `Load and store instructions`_
+BPF_ST 0x02 store from immediate operations `Load and store instructions`_
+BPF_STX 0x03 store from register operations `Load and store instructions`_
+BPF_ALU 0x04 32-bit arithmetic operations `Arithmetic and jump instructions`_
+BPF_JMP 0x05 64-bit jump operations `Arithmetic and jump instructions`_
+BPF_JMP32 0x06 32-bit jump operations `Arithmetic and jump instructions`_
+BPF_ALU64 0x07 64-bit arithmetic operations `Arithmetic and jump instructions`_
+========= ===== =============================== ===================================
+
+Arithmetic and jump instructions
+================================
+
+For arithmetic and jump instructions (``BPF_ALU``, ``BPF_ALU64``, ``BPF_JMP`` and
+``BPF_JMP32``), the 8-bit 'opcode' field is divided into three parts:
+
+============== ====== =================
+4 bits (MSB) 1 bit 3 bits (LSB)
+============== ====== =================
+code source instruction class
+============== ====== =================
+
+**code**
+ the operation code, whose meaning varies by instruction class
+
+**source**
+ the source operand location, which unless otherwise specified is one of:
+
+ ====== ===== ==============================================
+ source value description
+ ====== ===== ==============================================
+ BPF_K 0x00 use 32-bit 'imm' value as source operand
+ BPF_X 0x08 use 'src_reg' register value as source operand
+ ====== ===== ==============================================
+
+**instruction class**
+ the instruction class (see `Instruction classes`_)
+
+Arithmetic instructions
+-----------------------
+
+``BPF_ALU`` uses 32-bit wide operands while ``BPF_ALU64`` uses 64-bit wide operands for
+otherwise identical operations.
+The 'code' field encodes the operation as below, where 'src' and 'dst' refer
+to the values of the source and destination registers, respectively.
+
+======== ===== ==========================================================
+code value description
+======== ===== ==========================================================
+BPF_ADD 0x00 dst += src
+BPF_SUB 0x10 dst -= src
+BPF_MUL 0x20 dst \*= src
+BPF_DIV 0x30 dst = (src != 0) ? (dst / src) : 0
+BPF_OR 0x40 dst \|= src
+BPF_AND 0x50 dst &= src
+BPF_LSH 0x60 dst <<= src
+BPF_RSH 0x70 dst >>= src
+BPF_NEG 0x80 dst = ~src
+BPF_MOD 0x90 dst = (src != 0) ? (dst % src) : dst
+BPF_XOR 0xa0 dst ^= src
+BPF_MOV 0xb0 dst = src
+BPF_ARSH 0xc0 sign extending shift right
+BPF_END 0xd0 byte swap operations (see `Byte swap instructions`_ below)
+======== ===== ==========================================================
+
+Underflow and overflow are allowed during arithmetic operations, meaning
+the 64-bit or 32-bit value will wrap. If eBPF program execution would
+result in division by zero, the destination register is instead set to zero.
+If execution would result in modulo by zero, for ``BPF_ALU64`` the value of
+the destination register is unchanged whereas for ``BPF_ALU`` the upper
+32 bits of the destination register are zeroed.
+
+``BPF_ADD | BPF_X | BPF_ALU`` means::
+
+ dst = (u32) ((u32) dst + (u32) src)
+
+where '(u32)' indicates that the upper 32 bits are zeroed.
+
+``BPF_ADD | BPF_X | BPF_ALU64`` means::
+
+ dst = dst + src
+
+``BPF_XOR | BPF_K | BPF_ALU`` means::
+
+ dst = (u32) dst ^ (u32) imm32
+
+``BPF_XOR | BPF_K | BPF_ALU64`` means::
+
+ dst = dst ^ imm32
+
+Also note that the division and modulo operations are unsigned. Thus, for
+``BPF_ALU``, 'imm' is first interpreted as an unsigned 32-bit value, whereas
+for ``BPF_ALU64``, 'imm' is first sign extended to 64 bits and the result
+interpreted as an unsigned 64-bit value. There are no instructions for
+signed division or modulo.
+
+Byte swap instructions
+~~~~~~~~~~~~~~~~~~~~~~
+
+The byte swap instructions use an instruction class of ``BPF_ALU`` and a 4-bit
+'code' field of ``BPF_END``.
+
+The byte swap instructions operate on the destination register
+only and do not use a separate source register or immediate value.
+
+The 1-bit source operand field in the opcode is used to select what byte
+order the operation convert from or to:
+
+========= ===== =================================================
+source value description
+========= ===== =================================================
+BPF_TO_LE 0x00 convert between host byte order and little endian
+BPF_TO_BE 0x08 convert between host byte order and big endian
+========= ===== =================================================
+
+The 'imm' field encodes the width of the swap operations. The following widths
+are supported: 16, 32 and 64.
+
+Examples:
+
+``BPF_ALU | BPF_TO_LE | BPF_END`` with imm = 16 means::
+
+ dst = htole16(dst)
+
+``BPF_ALU | BPF_TO_BE | BPF_END`` with imm = 64 means::
+
+ dst = htobe64(dst)
+
+Jump instructions
+-----------------
+
+``BPF_JMP32`` uses 32-bit wide operands while ``BPF_JMP`` uses 64-bit wide operands for
+otherwise identical operations.
+The 'code' field encodes the operation as below:
+
+======== ===== ========================= ============
+code value description notes
+======== ===== ========================= ============
+BPF_JA 0x00 PC += off BPF_JMP only
+BPF_JEQ 0x10 PC += off if dst == src
+BPF_JGT 0x20 PC += off if dst > src unsigned
+BPF_JGE 0x30 PC += off if dst >= src unsigned
+BPF_JSET 0x40 PC += off if dst & src
+BPF_JNE 0x50 PC += off if dst != src
+BPF_JSGT 0x60 PC += off if dst > src signed
+BPF_JSGE 0x70 PC += off if dst >= src signed
+BPF_CALL 0x80 function call
+BPF_EXIT 0x90 function / program return BPF_JMP only
+BPF_JLT 0xa0 PC += off if dst < src unsigned
+BPF_JLE 0xb0 PC += off if dst <= src unsigned
+BPF_JSLT 0xc0 PC += off if dst < src signed
+BPF_JSLE 0xd0 PC += off if dst <= src signed
+======== ===== ========================= ============
+
+The eBPF program needs to store the return value into register R0 before doing a
+BPF_EXIT.
+
+
+Load and store instructions
+===========================
+
+For load and store instructions (``BPF_LD``, ``BPF_LDX``, ``BPF_ST``, and ``BPF_STX``), the
+8-bit 'opcode' field is divided as:
+
+============ ====== =================
+3 bits (MSB) 2 bits 3 bits (LSB)
+============ ====== =================
+mode size instruction class
+============ ====== =================
+
+The mode modifier is one of:
+
+ ============= ===== ==================================== =============
+ mode modifier value description reference
+ ============= ===== ==================================== =============
+ BPF_IMM 0x00 64-bit immediate instructions `64-bit immediate instructions`_
+ BPF_ABS 0x20 legacy BPF packet access (absolute) `Legacy BPF Packet access instructions`_
+ BPF_IND 0x40 legacy BPF packet access (indirect) `Legacy BPF Packet access instructions`_
+ BPF_MEM 0x60 regular load and store operations `Regular load and store operations`_
+ BPF_ATOMIC 0xc0 atomic operations `Atomic operations`_
+ ============= ===== ==================================== =============
+
+The size modifier is one of:
+
+ ============= ===== =====================
+ size modifier value description
+ ============= ===== =====================
+ BPF_W 0x00 word (4 bytes)
+ BPF_H 0x08 half word (2 bytes)
+ BPF_B 0x10 byte
+ BPF_DW 0x18 double word (8 bytes)
+ ============= ===== =====================
+
+Regular load and store operations
+---------------------------------
+
+The ``BPF_MEM`` mode modifier is used to encode regular load and store
+instructions that transfer data between a register and memory.
+
+``BPF_MEM | <size> | BPF_STX`` means::
+
+ *(size *) (dst + offset) = src
+
+``BPF_MEM | <size> | BPF_ST`` means::
+
+ *(size *) (dst + offset) = imm32
+
+``BPF_MEM | <size> | BPF_LDX`` means::
+
+ dst = *(size *) (src + offset)
+
+Where size is one of: ``BPF_B``, ``BPF_H``, ``BPF_W``, or ``BPF_DW``.
+
+Atomic operations
+-----------------
+
+Atomic operations are operations that operate on memory and can not be
+interrupted or corrupted by other access to the same memory region
+by other eBPF programs or means outside of this specification.
+
+All atomic operations supported by eBPF are encoded as store operations
+that use the ``BPF_ATOMIC`` mode modifier as follows:
+
+* ``BPF_ATOMIC | BPF_W | BPF_STX`` for 32-bit operations
+* ``BPF_ATOMIC | BPF_DW | BPF_STX`` for 64-bit operations
+* 8-bit and 16-bit wide atomic operations are not supported.
+
+The 'imm' field is used to encode the actual atomic operation.
+Simple atomic operation use a subset of the values defined to encode
+arithmetic operations in the 'imm' field to encode the atomic operation:
+
+======== ===== ===========
+imm value description
+======== ===== ===========
+BPF_ADD 0x00 atomic add
+BPF_OR 0x40 atomic or
+BPF_AND 0x50 atomic and
+BPF_XOR 0xa0 atomic xor
+======== ===== ===========
+
+
+``BPF_ATOMIC | BPF_W | BPF_STX`` with 'imm' = BPF_ADD means::
+
+ *(u32 *)(dst + offset) += src
+
+``BPF_ATOMIC | BPF_DW | BPF_STX`` with 'imm' = BPF ADD means::
+
+ *(u64 *)(dst + offset) += src
+
+In addition to the simple atomic operations, there also is a modifier and
+two complex atomic operations:
+
+=========== ================ ===========================
+imm value description
+=========== ================ ===========================
+BPF_FETCH 0x01 modifier: return old value
+BPF_XCHG 0xe0 | BPF_FETCH atomic exchange
+BPF_CMPXCHG 0xf0 | BPF_FETCH atomic compare and exchange
+=========== ================ ===========================
+
+The ``BPF_FETCH`` modifier is optional for simple atomic operations, and
+always set for the complex atomic operations. If the ``BPF_FETCH`` flag
+is set, then the operation also overwrites ``src`` with the value that
+was in memory before it was modified.
+
+The ``BPF_XCHG`` operation atomically exchanges ``src`` with the value
+addressed by ``dst + offset``.
+
+The ``BPF_CMPXCHG`` operation atomically compares the value addressed by
+``dst + offset`` with ``R0``. If they match, the value addressed by
+``dst + offset`` is replaced with ``src``. In either case, the
+value that was at ``dst + offset`` before the operation is zero-extended
+and loaded back to ``R0``.
+
+64-bit immediate instructions
+-----------------------------
+
+Instructions with the ``BPF_IMM`` 'mode' modifier use the wide instruction
+encoding for an extra imm64 value.
+
+There is currently only one such instruction.
+
+``BPF_LD | BPF_DW | BPF_IMM`` means::
+
+ dst = imm64
+
+
+Legacy BPF Packet access instructions
+-------------------------------------
+
+eBPF previously introduced special instructions for access to packet data that were
+carried over from classic BPF. However, these instructions are
+deprecated and should no longer be used.