diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/devicetree/bindings/clock/baikal,bt1-ccu-div.yaml | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/devicetree/bindings/clock/baikal,bt1-ccu-div.yaml')
-rw-r--r-- | Documentation/devicetree/bindings/clock/baikal,bt1-ccu-div.yaml | 192 |
1 files changed, 192 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/clock/baikal,bt1-ccu-div.yaml b/Documentation/devicetree/bindings/clock/baikal,bt1-ccu-div.yaml new file mode 100644 index 000000000..bd4cefbb1 --- /dev/null +++ b/Documentation/devicetree/bindings/clock/baikal,bt1-ccu-div.yaml @@ -0,0 +1,192 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +# Copyright (C) 2020 BAIKAL ELECTRONICS, JSC +%YAML 1.2 +--- +$id: http://devicetree.org/schemas/clock/baikal,bt1-ccu-div.yaml# +$schema: http://devicetree.org/meta-schemas/core.yaml# + +title: Baikal-T1 Clock Control Unit Dividers + +maintainers: + - Serge Semin <fancer.lancer@gmail.com> + +description: | + Clocks Control Unit is the core of Baikal-T1 SoC System Controller + responsible for the chip subsystems clocking and resetting. The CCU is + connected with an external fixed rate oscillator, which signal is transformed + into clocks of various frequencies and then propagated to either individual + IP-blocks or to groups of blocks (clock domains). The transformation is done + by means of an embedded into CCU PLLs and gateable/non-gateable dividers. The + later ones are described in this binding. Each clock domain can be also + individually reset by using the domain clocks divider configuration + registers. Baikal-T1 CCU is logically divided into the next components: + 1) External oscillator (normally XTAL's 25 MHz crystal oscillator, but + in general can provide any frequency supported by the CCU PLLs). + 2) PLLs clocks generators (PLLs). + 3) AXI-bus clock dividers (AXI) - described in this binding file. + 4) System devices reference clock dividers (SYS) - described in this binding + file. + which are connected with each other as shown on the next figure: + + +---------------+ + | Baikal-T1 CCU | + | +----+------|- MIPS P5600 cores + | +-|PLLs|------|- DDR controller + | | +----+ | + +----+ | | | | | + |XTAL|--|-+ | | +---+-| + +----+ | | | +-|AXI|-|- AXI-bus + | | | +---+-| + | | | | + | | +----+---+-|- APB-bus + | +-------|SYS|-|- Low-speed Devices + | +---+-|- High-speed Devices + +---------------+ + + Each sub-block is represented as a separate DT node and has an individual + driver to be bound with. + + In order to create signals of wide range frequencies the external oscillator + output is primarily connected to a set of CCU PLLs. Some of PLLs CLKOUT are + then passed over CCU dividers to create signals required for the target clock + domain (like AXI-bus or System Device consumers). The dividers have the + following structure: + + +--------------+ + CLKIN --|->+----+ 1|\ | + SETCLK--|--|/DIV|->| | | + CLKDIV--|--| | | |-|->CLKLOUT + LOCK----|--+----+ | | | + | |/ | + | | | + EN------|-----------+ | + RST-----|--------------|->RSTOUT + +--------------+ + + where CLKIN is the reference clock coming either from CCU PLLs or from an + external clock oscillator, SETCLK - a command to update the output clock in + accordance with a set divider, CLKDIV - clocks divider, LOCK - a signal of + the output clock stabilization, EN - enable/disable the divider block, + RST/RSTOUT - reset clocks domain signal. Depending on the consumer IP-core + peculiarities the dividers may lack of some functionality depicted on the + figure above (like EN, CLKDIV/LOCK/SETCLK). In this case the corresponding + clock provider just doesn't expose either switching functions, or the rate + configuration, or both of them. + + The clock dividers, which output clock is then consumed by the SoC individual + devices, are united into a single clocks provider called System Devices CCU. + Similarly the dividers with output clocks utilized as AXI-bus reference clocks + are called AXI-bus CCU. Both of them use the common clock bindings with no + custom properties. The list of exported clocks and reset signals can be found + in the files: 'include/dt-bindings/clock/bt1-ccu.h' and + 'include/dt-bindings/reset/bt1-ccu.h'. Since System Devices and AXI-bus CCU + are a part of the Baikal-T1 SoC System Controller their DT nodes are supposed + to be a children of later one. + +if: + properties: + compatible: + contains: + const: baikal,bt1-ccu-axi + +then: + properties: + clocks: + items: + - description: CCU SATA PLL output clock + - description: CCU PCIe PLL output clock + - description: CCU Ethernet PLL output clock + + clock-names: + items: + - const: sata_clk + - const: pcie_clk + - const: eth_clk + +else: + properties: + clocks: + items: + - description: External reference clock + - description: CCU SATA PLL output clock + - description: CCU PCIe PLL output clock + - description: CCU Ethernet PLL output clock + + clock-names: + items: + - const: ref_clk + - const: sata_clk + - const: pcie_clk + - const: eth_clk + +properties: + compatible: + enum: + - baikal,bt1-ccu-axi + - baikal,bt1-ccu-sys + + reg: + maxItems: 1 + + "#clock-cells": + const: 1 + + "#reset-cells": + const: 1 + + clocks: true + + clock-names: true + +additionalProperties: false + +required: + - compatible + - "#clock-cells" + - clocks + - clock-names + +examples: + # AXI-bus Clock Control Unit node: + - | + #include <dt-bindings/clock/bt1-ccu.h> + + clock-controller@1f04d030 { + compatible = "baikal,bt1-ccu-axi"; + reg = <0x1f04d030 0x030>; + #clock-cells = <1>; + #reset-cells = <1>; + + clocks = <&ccu_pll CCU_SATA_PLL>, + <&ccu_pll CCU_PCIE_PLL>, + <&ccu_pll CCU_ETH_PLL>; + clock-names = "sata_clk", "pcie_clk", "eth_clk"; + }; + # System Devices Clock Control Unit node: + - | + #include <dt-bindings/clock/bt1-ccu.h> + + clock-controller@1f04d060 { + compatible = "baikal,bt1-ccu-sys"; + reg = <0x1f04d060 0x0a0>; + #clock-cells = <1>; + #reset-cells = <1>; + + clocks = <&clk25m>, + <&ccu_pll CCU_SATA_PLL>, + <&ccu_pll CCU_PCIE_PLL>, + <&ccu_pll CCU_ETH_PLL>; + clock-names = "ref_clk", "sata_clk", "pcie_clk", + "eth_clk"; + }; + # Required Clock Control Unit PLL node: + - | + ccu_pll: clock-controller@1f04d000 { + compatible = "baikal,bt1-ccu-pll"; + reg = <0x1f04d000 0x028>; + #clock-cells = <1>; + + clocks = <&clk25m>; + clock-names = "ref_clk"; + }; +... |