diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/driver-api/device-io.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/driver-api/device-io.rst')
-rw-r--r-- | Documentation/driver-api/device-io.rst | 521 |
1 files changed, 521 insertions, 0 deletions
diff --git a/Documentation/driver-api/device-io.rst b/Documentation/driver-api/device-io.rst new file mode 100644 index 000000000..4d2baac03 --- /dev/null +++ b/Documentation/driver-api/device-io.rst @@ -0,0 +1,521 @@ +.. Copyright 2001 Matthew Wilcox +.. +.. This documentation is free software; you can redistribute +.. it and/or modify it under the terms of the GNU General Public +.. License as published by the Free Software Foundation; either +.. version 2 of the License, or (at your option) any later +.. version. + +=============================== +Bus-Independent Device Accesses +=============================== + +:Author: Matthew Wilcox +:Author: Alan Cox + +Introduction +============ + +Linux provides an API which abstracts performing IO across all busses +and devices, allowing device drivers to be written independently of bus +type. + +Memory Mapped IO +================ + +Getting Access to the Device +---------------------------- + +The most widely supported form of IO is memory mapped IO. That is, a +part of the CPU's address space is interpreted not as accesses to +memory, but as accesses to a device. Some architectures define devices +to be at a fixed address, but most have some method of discovering +devices. The PCI bus walk is a good example of such a scheme. This +document does not cover how to receive such an address, but assumes you +are starting with one. Physical addresses are of type unsigned long. + +This address should not be used directly. Instead, to get an address +suitable for passing to the accessor functions described below, you +should call ioremap(). An address suitable for accessing +the device will be returned to you. + +After you've finished using the device (say, in your module's exit +routine), call iounmap() in order to return the address +space to the kernel. Most architectures allocate new address space each +time you call ioremap(), and they can run out unless you +call iounmap(). + +Accessing the device +-------------------- + +The part of the interface most used by drivers is reading and writing +memory-mapped registers on the device. Linux provides interfaces to read +and write 8-bit, 16-bit, 32-bit and 64-bit quantities. Due to a +historical accident, these are named byte, word, long and quad accesses. +Both read and write accesses are supported; there is no prefetch support +at this time. + +The functions are named readb(), readw(), readl(), readq(), +readb_relaxed(), readw_relaxed(), readl_relaxed(), readq_relaxed(), +writeb(), writew(), writel() and writeq(). + +Some devices (such as framebuffers) would like to use larger transfers than +8 bytes at a time. For these devices, the memcpy_toio(), +memcpy_fromio() and memset_io() functions are +provided. Do not use memset or memcpy on IO addresses; they are not +guaranteed to copy data in order. + +The read and write functions are defined to be ordered. That is the +compiler is not permitted to reorder the I/O sequence. When the ordering +can be compiler optimised, you can use __readb() and friends to +indicate the relaxed ordering. Use this with care. + +While the basic functions are defined to be synchronous with respect to +each other and ordered with respect to each other the busses the devices +sit on may themselves have asynchronicity. In particular many authors +are burned by the fact that PCI bus writes are posted asynchronously. A +driver author must issue a read from the same device to ensure that +writes have occurred in the specific cases the author cares. This kind +of property cannot be hidden from driver writers in the API. In some +cases, the read used to flush the device may be expected to fail (if the +card is resetting, for example). In that case, the read should be done +from config space, which is guaranteed to soft-fail if the card doesn't +respond. + +The following is an example of flushing a write to a device when the +driver would like to ensure the write's effects are visible prior to +continuing execution:: + + static inline void + qla1280_disable_intrs(struct scsi_qla_host *ha) + { + struct device_reg *reg; + + reg = ha->iobase; + /* disable risc and host interrupts */ + WRT_REG_WORD(®->ictrl, 0); + /* + * The following read will ensure that the above write + * has been received by the device before we return from this + * function. + */ + RD_REG_WORD(®->ictrl); + ha->flags.ints_enabled = 0; + } + +PCI ordering rules also guarantee that PIO read responses arrive after any +outstanding DMA writes from that bus, since for some devices the result of +a readb() call may signal to the driver that a DMA transaction is +complete. In many cases, however, the driver may want to indicate that the +next readb() call has no relation to any previous DMA writes +performed by the device. The driver can use readb_relaxed() for +these cases, although only some platforms will honor the relaxed +semantics. Using the relaxed read functions will provide significant +performance benefits on platforms that support it. The qla2xxx driver +provides examples of how to use readX_relaxed(). In many cases, a majority +of the driver's readX() calls can safely be converted to readX_relaxed() +calls, since only a few will indicate or depend on DMA completion. + +Port Space Accesses +=================== + +Port Space Explained +-------------------- + +Another form of IO commonly supported is Port Space. This is a range of +addresses separate to the normal memory address space. Access to these +addresses is generally not as fast as accesses to the memory mapped +addresses, and it also has a potentially smaller address space. + +Unlike memory mapped IO, no preparation is required to access port +space. + +Accessing Port Space +-------------------- + +Accesses to this space are provided through a set of functions which +allow 8-bit, 16-bit and 32-bit accesses; also known as byte, word and +long. These functions are inb(), inw(), +inl(), outb(), outw() and +outl(). + +Some variants are provided for these functions. Some devices require +that accesses to their ports are slowed down. This functionality is +provided by appending a ``_p`` to the end of the function. +There are also equivalents to memcpy. The ins() and +outs() functions copy bytes, words or longs to the given +port. + +__iomem pointer tokens +====================== + +The data type for an MMIO address is an ``__iomem`` qualified pointer, such as +``void __iomem *reg``. On most architectures it is a regular pointer that +points to a virtual memory address and can be offset or dereferenced, but in +portable code, it must only be passed from and to functions that explicitly +operated on an ``__iomem`` token, in particular the ioremap() and +readl()/writel() functions. The 'sparse' semantic code checker can be used to +verify that this is done correctly. + +While on most architectures, ioremap() creates a page table entry for an +uncached virtual address pointing to the physical MMIO address, some +architectures require special instructions for MMIO, and the ``__iomem`` pointer +just encodes the physical address or an offsettable cookie that is interpreted +by readl()/writel(). + +Differences between I/O access functions +======================================== + +readq(), readl(), readw(), readb(), writeq(), writel(), writew(), writeb() + + These are the most generic accessors, providing serialization against other + MMIO accesses and DMA accesses as well as fixed endianness for accessing + little-endian PCI devices and on-chip peripherals. Portable device drivers + should generally use these for any access to ``__iomem`` pointers. + + Note that posted writes are not strictly ordered against a spinlock, see + Documentation/driver-api/io_ordering.rst. + +readq_relaxed(), readl_relaxed(), readw_relaxed(), readb_relaxed(), +writeq_relaxed(), writel_relaxed(), writew_relaxed(), writeb_relaxed() + + On architectures that require an expensive barrier for serializing against + DMA, these "relaxed" versions of the MMIO accessors only serialize against + each other, but contain a less expensive barrier operation. A device driver + might use these in a particularly performance sensitive fast path, with a + comment that explains why the usage in a specific location is safe without + the extra barriers. + + See memory-barriers.txt for a more detailed discussion on the precise ordering + guarantees of the non-relaxed and relaxed versions. + +ioread64(), ioread32(), ioread16(), ioread8(), +iowrite64(), iowrite32(), iowrite16(), iowrite8() + + These are an alternative to the normal readl()/writel() functions, with almost + identical behavior, but they can also operate on ``__iomem`` tokens returned + for mapping PCI I/O space with pci_iomap() or ioport_map(). On architectures + that require special instructions for I/O port access, this adds a small + overhead for an indirect function call implemented in lib/iomap.c, while on + other architectures, these are simply aliases. + +ioread64be(), ioread32be(), ioread16be() +iowrite64be(), iowrite32be(), iowrite16be() + + These behave in the same way as the ioread32()/iowrite32() family, but with + reversed byte order, for accessing devices with big-endian MMIO registers. + Device drivers that can operate on either big-endian or little-endian + registers may have to implement a custom wrapper function that picks one or + the other depending on which device was found. + + Note: On some architectures, the normal readl()/writel() functions + traditionally assume that devices are the same endianness as the CPU, while + using a hardware byte-reverse on the PCI bus when running a big-endian kernel. + Drivers that use readl()/writel() this way are generally not portable, but + tend to be limited to a particular SoC. + +hi_lo_readq(), lo_hi_readq(), hi_lo_readq_relaxed(), lo_hi_readq_relaxed(), +ioread64_lo_hi(), ioread64_hi_lo(), ioread64be_lo_hi(), ioread64be_hi_lo(), +hi_lo_writeq(), lo_hi_writeq(), hi_lo_writeq_relaxed(), lo_hi_writeq_relaxed(), +iowrite64_lo_hi(), iowrite64_hi_lo(), iowrite64be_lo_hi(), iowrite64be_hi_lo() + + Some device drivers have 64-bit registers that cannot be accessed atomically + on 32-bit architectures but allow two consecutive 32-bit accesses instead. + Since it depends on the particular device which of the two halves has to be + accessed first, a helper is provided for each combination of 64-bit accessors + with either low/high or high/low word ordering. A device driver must include + either <linux/io-64-nonatomic-lo-hi.h> or <linux/io-64-nonatomic-hi-lo.h> to + get the function definitions along with helpers that redirect the normal + readq()/writeq() to them on architectures that do not provide 64-bit access + natively. + +__raw_readq(), __raw_readl(), __raw_readw(), __raw_readb(), +__raw_writeq(), __raw_writel(), __raw_writew(), __raw_writeb() + + These are low-level MMIO accessors without barriers or byteorder changes and + architecture specific behavior. Accesses are usually atomic in the sense that + a four-byte __raw_readl() does not get split into individual byte loads, but + multiple consecutive accesses can be combined on the bus. In portable code, it + is only safe to use these to access memory behind a device bus but not MMIO + registers, as there are no ordering guarantees with regard to other MMIO + accesses or even spinlocks. The byte order is generally the same as for normal + memory, so unlike the other functions, these can be used to copy data between + kernel memory and device memory. + +inl(), inw(), inb(), outl(), outw(), outb() + + PCI I/O port resources traditionally require separate helpers as they are + implemented using special instructions on the x86 architecture. On most other + architectures, these are mapped to readl()/writel() style accessors + internally, usually pointing to a fixed area in virtual memory. Instead of an + ``__iomem`` pointer, the address is a 32-bit integer token to identify a port + number. PCI requires I/O port access to be non-posted, meaning that an outb() + must complete before the following code executes, while a normal writeb() may + still be in progress. On architectures that correctly implement this, I/O port + access is therefore ordered against spinlocks. Many non-x86 PCI host bridge + implementations and CPU architectures however fail to implement non-posted I/O + space on PCI, so they can end up being posted on such hardware. + + In some architectures, the I/O port number space has a 1:1 mapping to + ``__iomem`` pointers, but this is not recommended and device drivers should + not rely on that for portability. Similarly, an I/O port number as described + in a PCI base address register may not correspond to the port number as seen + by a device driver. Portable drivers need to read the port number for the + resource provided by the kernel. + + There are no direct 64-bit I/O port accessors, but pci_iomap() in combination + with ioread64/iowrite64 can be used instead. + +inl_p(), inw_p(), inb_p(), outl_p(), outw_p(), outb_p() + + On ISA devices that require specific timing, the _p versions of the I/O + accessors add a small delay. On architectures that do not have ISA buses, + these are aliases to the normal inb/outb helpers. + +readsq, readsl, readsw, readsb +writesq, writesl, writesw, writesb +ioread64_rep, ioread32_rep, ioread16_rep, ioread8_rep +iowrite64_rep, iowrite32_rep, iowrite16_rep, iowrite8_rep +insl, insw, insb, outsl, outsw, outsb + + These are helpers that access the same address multiple times, usually to copy + data between kernel memory byte stream and a FIFO buffer. Unlike the normal + MMIO accessors, these do not perform a byteswap on big-endian kernels, so the + first byte in the FIFO register corresponds to the first byte in the memory + buffer regardless of the architecture. + +Device memory mapping modes +=========================== + +Some architectures support multiple modes for mapping device memory. +ioremap_*() variants provide a common abstraction around these +architecture-specific modes, with a shared set of semantics. + +ioremap() is the most common mapping type, and is applicable to typical device +memory (e.g. I/O registers). Other modes can offer weaker or stronger +guarantees, if supported by the architecture. From most to least common, they +are as follows: + +ioremap() +--------- + +The default mode, suitable for most memory-mapped devices, e.g. control +registers. Memory mapped using ioremap() has the following characteristics: + +* Uncached - CPU-side caches are bypassed, and all reads and writes are handled + directly by the device +* No speculative operations - the CPU may not issue a read or write to this + memory, unless the instruction that does so has been reached in committed + program flow. +* No reordering - The CPU may not reorder accesses to this memory mapping with + respect to each other. On some architectures, this relies on barriers in + readl_relaxed()/writel_relaxed(). +* No repetition - The CPU may not issue multiple reads or writes for a single + program instruction. +* No write-combining - Each I/O operation results in one discrete read or write + being issued to the device, and multiple writes are not combined into larger + writes. This may or may not be enforced when using __raw I/O accessors or + pointer dereferences. +* Non-executable - The CPU is not allowed to speculate instruction execution + from this memory (it probably goes without saying, but you're also not + allowed to jump into device memory). + +On many platforms and buses (e.g. PCI), writes issued through ioremap() +mappings are posted, which means that the CPU does not wait for the write to +actually reach the target device before retiring the write instruction. + +On many platforms, I/O accesses must be aligned with respect to the access +size; failure to do so will result in an exception or unpredictable results. + +ioremap_wc() +------------ + +Maps I/O memory as normal memory with write combining. Unlike ioremap(), + +* The CPU may speculatively issue reads from the device that the program + didn't actually execute, and may choose to basically read whatever it wants. +* The CPU may reorder operations as long as the result is consistent from the + program's point of view. +* The CPU may write to the same location multiple times, even when the program + issued a single write. +* The CPU may combine several writes into a single larger write. + +This mode is typically used for video framebuffers, where it can increase +performance of writes. It can also be used for other blocks of memory in +devices (e.g. buffers or shared memory), but care must be taken as accesses are +not guaranteed to be ordered with respect to normal ioremap() MMIO register +accesses without explicit barriers. + +On a PCI bus, it is usually safe to use ioremap_wc() on MMIO areas marked as +``IORESOURCE_PREFETCH``, but it may not be used on those without the flag. +For on-chip devices, there is no corresponding flag, but a driver can use +ioremap_wc() on a device that is known to be safe. + +ioremap_wt() +------------ + +Maps I/O memory as normal memory with write-through caching. Like ioremap_wc(), +but also, + +* The CPU may cache writes issued to and reads from the device, and serve reads + from that cache. + +This mode is sometimes used for video framebuffers, where drivers still expect +writes to reach the device in a timely manner (and not be stuck in the CPU +cache), but reads may be served from the cache for efficiency. However, it is +rarely useful these days, as framebuffer drivers usually perform writes only, +for which ioremap_wc() is more efficient (as it doesn't needlessly trash the +cache). Most drivers should not use this. + +ioremap_np() +------------ + +Like ioremap(), but explicitly requests non-posted write semantics. On some +architectures and buses, ioremap() mappings have posted write semantics, which +means that writes can appear to "complete" from the point of view of the +CPU before the written data actually arrives at the target device. Writes are +still ordered with respect to other writes and reads from the same device, but +due to the posted write semantics, this is not the case with respect to other +devices. ioremap_np() explicitly requests non-posted semantics, which means +that the write instruction will not appear to complete until the device has +received (and to some platform-specific extent acknowledged) the written data. + +This mapping mode primarily exists to cater for platforms with bus fabrics that +require this particular mapping mode to work correctly. These platforms set the +``IORESOURCE_MEM_NONPOSTED`` flag for a resource that requires ioremap_np() +semantics and portable drivers should use an abstraction that automatically +selects it where appropriate (see the `Higher-level ioremap abstractions`_ +section below). + +The bare ioremap_np() is only available on some architectures; on others, it +always returns NULL. Drivers should not normally use it, unless they are +platform-specific or they derive benefit from non-posted writes where +supported, and can fall back to ioremap() otherwise. The normal approach to +ensure posted write completion is to do a dummy read after a write as +explained in `Accessing the device`_, which works with ioremap() on all +platforms. + +ioremap_np() should never be used for PCI drivers. PCI memory space writes are +always posted, even on architectures that otherwise implement ioremap_np(). +Using ioremap_np() for PCI BARs will at best result in posted write semantics, +and at worst result in complete breakage. + +Note that non-posted write semantics are orthogonal to CPU-side ordering +guarantees. A CPU may still choose to issue other reads or writes before a +non-posted write instruction retires. See the previous section on MMIO access +functions for details on the CPU side of things. + +ioremap_uc() +------------ + +ioremap_uc() behaves like ioremap() except that on the x86 architecture without +'PAT' mode, it marks memory as uncached even when the MTRR has designated +it as cacheable, see Documentation/x86/pat.rst. + +Portable drivers should avoid the use of ioremap_uc(). + +ioremap_cache() +--------------- + +ioremap_cache() effectively maps I/O memory as normal RAM. CPU write-back +caches can be used, and the CPU is free to treat the device as if it were a +block of RAM. This should never be used for device memory which has side +effects of any kind, or which does not return the data previously written on +read. + +It should also not be used for actual RAM, as the returned pointer is an +``__iomem`` token. memremap() can be used for mapping normal RAM that is outside +of the linear kernel memory area to a regular pointer. + +Portable drivers should avoid the use of ioremap_cache(). + +Architecture example +-------------------- + +Here is how the above modes map to memory attribute settings on the ARM64 +architecture: + ++------------------------+--------------------------------------------+ +| API | Memory region type and cacheability | ++------------------------+--------------------------------------------+ +| ioremap_np() | Device-nGnRnE | ++------------------------+--------------------------------------------+ +| ioremap() | Device-nGnRE | ++------------------------+--------------------------------------------+ +| ioremap_uc() | (not implemented) | ++------------------------+--------------------------------------------+ +| ioremap_wc() | Normal-Non Cacheable | ++------------------------+--------------------------------------------+ +| ioremap_wt() | (not implemented; fallback to ioremap) | ++------------------------+--------------------------------------------+ +| ioremap_cache() | Normal-Write-Back Cacheable | ++------------------------+--------------------------------------------+ + +Higher-level ioremap abstractions +================================= + +Instead of using the above raw ioremap() modes, drivers are encouraged to use +higher-level APIs. These APIs may implement platform-specific logic to +automatically choose an appropriate ioremap mode on any given bus, allowing for +a platform-agnostic driver to work on those platforms without any special +cases. At the time of this writing, the following ioremap() wrappers have such +logic: + +devm_ioremap_resource() + + Can automatically select ioremap_np() over ioremap() according to platform + requirements, if the ``IORESOURCE_MEM_NONPOSTED`` flag is set on the struct + resource. Uses devres to automatically unmap the resource when the driver + probe() function fails or a device in unbound from its driver. + + Documented in Documentation/driver-api/driver-model/devres.rst. + +of_address_to_resource() + + Automatically sets the ``IORESOURCE_MEM_NONPOSTED`` flag for platforms that + require non-posted writes for certain buses (see the nonposted-mmio and + posted-mmio device tree properties). + +of_iomap() + + Maps the resource described in a ``reg`` property in the device tree, doing + all required translations. Automatically selects ioremap_np() according to + platform requirements, as above. + +pci_ioremap_bar(), pci_ioremap_wc_bar() + + Maps the resource described in a PCI base address without having to extract + the physical address first. + +pci_iomap(), pci_iomap_wc() + + Like pci_ioremap_bar()/pci_ioremap_bar(), but also works on I/O space when + used together with ioread32()/iowrite32() and similar accessors + +pcim_iomap() + + Like pci_iomap(), but uses devres to automatically unmap the resource when + the driver probe() function fails or a device in unbound from its driver + + Documented in Documentation/driver-api/driver-model/devres.rst. + +Not using these wrappers may make drivers unusable on certain platforms with +stricter rules for mapping I/O memory. + +Generalizing Access to System and I/O Memory +============================================ + +.. kernel-doc:: include/linux/iosys-map.h + :doc: overview + +.. kernel-doc:: include/linux/iosys-map.h + :internal: + +Public Functions Provided +========================= + +.. kernel-doc:: arch/x86/include/asm/io.h + :internal: + +.. kernel-doc:: lib/pci_iomap.c + :export: |