diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/driver-api/media/drivers/pvrusb2.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/driver-api/media/drivers/pvrusb2.rst')
-rw-r--r-- | Documentation/driver-api/media/drivers/pvrusb2.rst | 202 |
1 files changed, 202 insertions, 0 deletions
diff --git a/Documentation/driver-api/media/drivers/pvrusb2.rst b/Documentation/driver-api/media/drivers/pvrusb2.rst new file mode 100644 index 000000000..cbd9359c2 --- /dev/null +++ b/Documentation/driver-api/media/drivers/pvrusb2.rst @@ -0,0 +1,202 @@ +.. SPDX-License-Identifier: GPL-2.0 + +The pvrusb2 driver +================== + +Author: Mike Isely <isely@pobox.com> + +Background +---------- + +This driver is intended for the "Hauppauge WinTV PVR USB 2.0", which +is a USB 2.0 hosted TV Tuner. This driver is a work in progress. +Its history started with the reverse-engineering effort by Björn +Danielsson <pvrusb2@dax.nu> whose web page can be found here: +http://pvrusb2.dax.nu/ + +From there Aurelien Alleaume <slts@free.fr> began an effort to +create a video4linux compatible driver. I began with Aurelien's +last known snapshot and evolved the driver to the state it is in +here. + +More information on this driver can be found at: +https://www.isely.net/pvrusb2.html + + +This driver has a strong separation of layers. They are very +roughly: + +1. Low level wire-protocol implementation with the device. + +2. I2C adaptor implementation and corresponding I2C client drivers + implemented elsewhere in V4L. + +3. High level hardware driver implementation which coordinates all + activities that ensure correct operation of the device. + +4. A "context" layer which manages instancing of driver, setup, + tear-down, arbitration, and interaction with high level + interfaces appropriately as devices are hotplugged in the + system. + +5. High level interfaces which glue the driver to various published + Linux APIs (V4L, sysfs, maybe DVB in the future). + +The most important shearing layer is between the top 2 layers. A +lot of work went into the driver to ensure that any kind of +conceivable API can be laid on top of the core driver. (Yes, the +driver internally leverages V4L to do its work but that really has +nothing to do with the API published by the driver to the outside +world.) The architecture allows for different APIs to +simultaneously access the driver. I have a strong sense of fairness +about APIs and also feel that it is a good design principle to keep +implementation and interface isolated from each other. Thus while +right now the V4L high level interface is the most complete, the +sysfs high level interface will work equally well for similar +functions, and there's no reason I see right now why it shouldn't be +possible to produce a DVB high level interface that can sit right +alongside V4L. + +Building +-------- + +To build these modules essentially amounts to just running "Make", +but you need the kernel source tree nearby and you will likely also +want to set a few controlling environment variables first in order +to link things up with that source tree. Please see the Makefile +here for comments that explain how to do that. + +Source file list / functional overview +-------------------------------------- + +(Note: The term "module" used below generally refers to loosely +defined functional units within the pvrusb2 driver and bears no +relation to the Linux kernel's concept of a loadable module.) + +pvrusb2-audio.[ch] - This is glue logic that resides between this + driver and the msp3400.ko I2C client driver (which is found + elsewhere in V4L). + +pvrusb2-context.[ch] - This module implements the context for an + instance of the driver. Everything else eventually ties back to + or is otherwise instanced within the data structures implemented + here. Hotplugging is ultimately coordinated here. All high level + interfaces tie into the driver through this module. This module + helps arbitrate each interface's access to the actual driver core, + and is designed to allow concurrent access through multiple + instances of multiple interfaces (thus you can for example change + the tuner's frequency through sysfs while simultaneously streaming + video through V4L out to an instance of mplayer). + +pvrusb2-debug.h - This header defines a printk() wrapper and a mask + of debugging bit definitions for the various kinds of debug + messages that can be enabled within the driver. + +pvrusb2-debugifc.[ch] - This module implements a crude command line + oriented debug interface into the driver. Aside from being part + of the process for implementing manual firmware extraction (see + the pvrusb2 web site mentioned earlier), probably I'm the only one + who has ever used this. It is mainly a debugging aid. + +pvrusb2-eeprom.[ch] - This is glue logic that resides between this + driver the tveeprom.ko module, which is itself implemented + elsewhere in V4L. + +pvrusb2-encoder.[ch] - This module implements all protocol needed to + interact with the Conexant mpeg2 encoder chip within the pvrusb2 + device. It is a crude echo of corresponding logic in ivtv, + however the design goals (strict isolation) and physical layer + (proxy through USB instead of PCI) are enough different that this + implementation had to be completely different. + +pvrusb2-hdw-internal.h - This header defines the core data structure + in the driver used to track ALL internal state related to control + of the hardware. Nobody outside of the core hardware-handling + modules should have any business using this header. All external + access to the driver should be through one of the high level + interfaces (e.g. V4L, sysfs, etc), and in fact even those high + level interfaces are restricted to the API defined in + pvrusb2-hdw.h and NOT this header. + +pvrusb2-hdw.h - This header defines the full internal API for + controlling the hardware. High level interfaces (e.g. V4L, sysfs) + will work through here. + +pvrusb2-hdw.c - This module implements all the various bits of logic + that handle overall control of a specific pvrusb2 device. + (Policy, instantiation, and arbitration of pvrusb2 devices fall + within the jurisdiction of pvrusb-context not here). + +pvrusb2-i2c-chips-\*.c - These modules implement the glue logic to + tie together and configure various I2C modules as they attach to + the I2C bus. There are two versions of this file. The "v4l2" + version is intended to be used in-tree alongside V4L, where we + implement just the logic that makes sense for a pure V4L + environment. The "all" version is intended for use outside of + V4L, where we might encounter other possibly "challenging" modules + from ivtv or older kernel snapshots (or even the support modules + in the standalone snapshot). + +pvrusb2-i2c-cmd-v4l1.[ch] - This module implements generic V4L1 + compatible commands to the I2C modules. It is here where state + changes inside the pvrusb2 driver are translated into V4L1 + commands that are in turn send to the various I2C modules. + +pvrusb2-i2c-cmd-v4l2.[ch] - This module implements generic V4L2 + compatible commands to the I2C modules. It is here where state + changes inside the pvrusb2 driver are translated into V4L2 + commands that are in turn send to the various I2C modules. + +pvrusb2-i2c-core.[ch] - This module provides an implementation of a + kernel-friendly I2C adaptor driver, through which other external + I2C client drivers (e.g. msp3400, tuner, lirc) may connect and + operate corresponding chips within the pvrusb2 device. It is + through here that other V4L modules can reach into this driver to + operate specific pieces (and those modules are in turn driven by + glue logic which is coordinated by pvrusb2-hdw, doled out by + pvrusb2-context, and then ultimately made available to users + through one of the high level interfaces). + +pvrusb2-io.[ch] - This module implements a very low level ring of + transfer buffers, required in order to stream data from the + device. This module is *very* low level. It only operates the + buffers and makes no attempt to define any policy or mechanism for + how such buffers might be used. + +pvrusb2-ioread.[ch] - This module layers on top of pvrusb2-io.[ch] + to provide a streaming API usable by a read() system call style of + I/O. Right now this is the only layer on top of pvrusb2-io.[ch], + however the underlying architecture here was intended to allow for + other styles of I/O to be implemented with additional modules, like + mmap()'ed buffers or something even more exotic. + +pvrusb2-main.c - This is the top level of the driver. Module level + and USB core entry points are here. This is our "main". + +pvrusb2-sysfs.[ch] - This is the high level interface which ties the + pvrusb2 driver into sysfs. Through this interface you can do + everything with the driver except actually stream data. + +pvrusb2-tuner.[ch] - This is glue logic that resides between this + driver and the tuner.ko I2C client driver (which is found + elsewhere in V4L). + +pvrusb2-util.h - This header defines some common macros used + throughout the driver. These macros are not really specific to + the driver, but they had to go somewhere. + +pvrusb2-v4l2.[ch] - This is the high level interface which ties the + pvrusb2 driver into video4linux. It is through here that V4L + applications can open and operate the driver in the usual V4L + ways. Note that **ALL** V4L functionality is published only + through here and nowhere else. + +pvrusb2-video-\*.[ch] - This is glue logic that resides between this + driver and the saa711x.ko I2C client driver (which is found + elsewhere in V4L). Note that saa711x.ko used to be known as + saa7115.ko in ivtv. There are two versions of this; one is + selected depending on the particular saa711[5x].ko that is found. + +pvrusb2.h - This header contains compile time tunable parameters + (and at the moment the driver has very little that needs to be + tuned). |