diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/driver-api/pm/cpuidle.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/driver-api/pm/cpuidle.rst')
-rw-r--r-- | Documentation/driver-api/pm/cpuidle.rst | 279 |
1 files changed, 279 insertions, 0 deletions
diff --git a/Documentation/driver-api/pm/cpuidle.rst b/Documentation/driver-api/pm/cpuidle.rst new file mode 100644 index 000000000..d47720860 --- /dev/null +++ b/Documentation/driver-api/pm/cpuidle.rst @@ -0,0 +1,279 @@ +.. SPDX-License-Identifier: GPL-2.0 +.. include:: <isonum.txt> + +======================== +CPU Idle Time Management +======================== + +:Copyright: |copy| 2019 Intel Corporation + +:Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> + + +CPU Idle Time Management Subsystem +================================== + +Every time one of the logical CPUs in the system (the entities that appear to +fetch and execute instructions: hardware threads, if present, or processor +cores) is idle after an interrupt or equivalent wakeup event, which means that +there are no tasks to run on it except for the special "idle" task associated +with it, there is an opportunity to save energy for the processor that it +belongs to. That can be done by making the idle logical CPU stop fetching +instructions from memory and putting some of the processor's functional units +depended on by it into an idle state in which they will draw less power. + +However, there may be multiple different idle states that can be used in such a +situation in principle, so it may be necessary to find the most suitable one +(from the kernel perspective) and ask the processor to use (or "enter") that +particular idle state. That is the role of the CPU idle time management +subsystem in the kernel, called ``CPUIdle``. + +The design of ``CPUIdle`` is modular and based on the code duplication avoidance +principle, so the generic code that in principle need not depend on the hardware +or platform design details in it is separate from the code that interacts with +the hardware. It generally is divided into three categories of functional +units: *governors* responsible for selecting idle states to ask the processor +to enter, *drivers* that pass the governors' decisions on to the hardware and +the *core* providing a common framework for them. + + +CPU Idle Time Governors +======================= + +A CPU idle time (``CPUIdle``) governor is a bundle of policy code invoked when +one of the logical CPUs in the system turns out to be idle. Its role is to +select an idle state to ask the processor to enter in order to save some energy. + +``CPUIdle`` governors are generic and each of them can be used on any hardware +platform that the Linux kernel can run on. For this reason, data structures +operated on by them cannot depend on any hardware architecture or platform +design details as well. + +The governor itself is represented by a struct cpuidle_governor object +containing four callback pointers, :c:member:`enable`, :c:member:`disable`, +:c:member:`select`, :c:member:`reflect`, a :c:member:`rating` field described +below, and a name (string) used for identifying it. + +For the governor to be available at all, that object needs to be registered +with the ``CPUIdle`` core by calling :c:func:`cpuidle_register_governor()` with +a pointer to it passed as the argument. If successful, that causes the core to +add the governor to the global list of available governors and, if it is the +only one in the list (that is, the list was empty before) or the value of its +:c:member:`rating` field is greater than the value of that field for the +governor currently in use, or the name of the new governor was passed to the +kernel as the value of the ``cpuidle.governor=`` command line parameter, the new +governor will be used from that point on (there can be only one ``CPUIdle`` +governor in use at a time). Also, user space can choose the ``CPUIdle`` +governor to use at run time via ``sysfs``. + +Once registered, ``CPUIdle`` governors cannot be unregistered, so it is not +practical to put them into loadable kernel modules. + +The interface between ``CPUIdle`` governors and the core consists of four +callbacks: + +:c:member:`enable` + :: + + int (*enable) (struct cpuidle_driver *drv, struct cpuidle_device *dev); + + The role of this callback is to prepare the governor for handling the + (logical) CPU represented by the struct cpuidle_device object pointed + to by the ``dev`` argument. The struct cpuidle_driver object pointed + to by the ``drv`` argument represents the ``CPUIdle`` driver to be used + with that CPU (among other things, it should contain the list of + struct cpuidle_state objects representing idle states that the + processor holding the given CPU can be asked to enter). + + It may fail, in which case it is expected to return a negative error + code, and that causes the kernel to run the architecture-specific + default code for idle CPUs on the CPU in question instead of ``CPUIdle`` + until the ``->enable()`` governor callback is invoked for that CPU + again. + +:c:member:`disable` + :: + + void (*disable) (struct cpuidle_driver *drv, struct cpuidle_device *dev); + + Called to make the governor stop handling the (logical) CPU represented + by the struct cpuidle_device object pointed to by the ``dev`` + argument. + + It is expected to reverse any changes made by the ``->enable()`` + callback when it was last invoked for the target CPU, free all memory + allocated by that callback and so on. + +:c:member:`select` + :: + + int (*select) (struct cpuidle_driver *drv, struct cpuidle_device *dev, + bool *stop_tick); + + Called to select an idle state for the processor holding the (logical) + CPU represented by the struct cpuidle_device object pointed to by the + ``dev`` argument. + + The list of idle states to take into consideration is represented by the + :c:member:`states` array of struct cpuidle_state objects held by the + struct cpuidle_driver object pointed to by the ``drv`` argument (which + represents the ``CPUIdle`` driver to be used with the CPU at hand). The + value returned by this callback is interpreted as an index into that + array (unless it is a negative error code). + + The ``stop_tick`` argument is used to indicate whether or not to stop + the scheduler tick before asking the processor to enter the selected + idle state. When the ``bool`` variable pointed to by it (which is set + to ``true`` before invoking this callback) is cleared to ``false``, the + processor will be asked to enter the selected idle state without + stopping the scheduler tick on the given CPU (if the tick has been + stopped on that CPU already, however, it will not be restarted before + asking the processor to enter the idle state). + + This callback is mandatory (i.e. the :c:member:`select` callback pointer + in struct cpuidle_governor must not be ``NULL`` for the registration + of the governor to succeed). + +:c:member:`reflect` + :: + + void (*reflect) (struct cpuidle_device *dev, int index); + + Called to allow the governor to evaluate the accuracy of the idle state + selection made by the ``->select()`` callback (when it was invoked last + time) and possibly use the result of that to improve the accuracy of + idle state selections in the future. + +In addition, ``CPUIdle`` governors are required to take power management +quality of service (PM QoS) constraints on the processor wakeup latency into +account when selecting idle states. In order to obtain the current effective +PM QoS wakeup latency constraint for a given CPU, a ``CPUIdle`` governor is +expected to pass the number of the CPU to +:c:func:`cpuidle_governor_latency_req()`. Then, the governor's ``->select()`` +callback must not return the index of an indle state whose +:c:member:`exit_latency` value is greater than the number returned by that +function. + + +CPU Idle Time Management Drivers +================================ + +CPU idle time management (``CPUIdle``) drivers provide an interface between the +other parts of ``CPUIdle`` and the hardware. + +First of all, a ``CPUIdle`` driver has to populate the :c:member:`states` array +of struct cpuidle_state objects included in the struct cpuidle_driver object +representing it. Going forward this array will represent the list of available +idle states that the processor hardware can be asked to enter shared by all of +the logical CPUs handled by the given driver. + +The entries in the :c:member:`states` array are expected to be sorted by the +value of the :c:member:`target_residency` field in struct cpuidle_state in +the ascending order (that is, index 0 should correspond to the idle state with +the minimum value of :c:member:`target_residency`). [Since the +:c:member:`target_residency` value is expected to reflect the "depth" of the +idle state represented by the struct cpuidle_state object holding it, this +sorting order should be the same as the ascending sorting order by the idle +state "depth".] + +Three fields in struct cpuidle_state are used by the existing ``CPUIdle`` +governors for computations related to idle state selection: + +:c:member:`target_residency` + Minimum time to spend in this idle state including the time needed to + enter it (which may be substantial) to save more energy than could + be saved by staying in a shallower idle state for the same amount of + time, in microseconds. + +:c:member:`exit_latency` + Maximum time it will take a CPU asking the processor to enter this idle + state to start executing the first instruction after a wakeup from it, + in microseconds. + +:c:member:`flags` + Flags representing idle state properties. Currently, governors only use + the ``CPUIDLE_FLAG_POLLING`` flag which is set if the given object + does not represent a real idle state, but an interface to a software + "loop" that can be used in order to avoid asking the processor to enter + any idle state at all. [There are other flags used by the ``CPUIdle`` + core in special situations.] + +The :c:member:`enter` callback pointer in struct cpuidle_state, which must not +be ``NULL``, points to the routine to execute in order to ask the processor to +enter this particular idle state: + +:: + + void (*enter) (struct cpuidle_device *dev, struct cpuidle_driver *drv, + int index); + +The first two arguments of it point to the struct cpuidle_device object +representing the logical CPU running this callback and the +struct cpuidle_driver object representing the driver itself, respectively, +and the last one is an index of the struct cpuidle_state entry in the driver's +:c:member:`states` array representing the idle state to ask the processor to +enter. + +The analogous ``->enter_s2idle()`` callback in struct cpuidle_state is used +only for implementing the suspend-to-idle system-wide power management feature. +The difference between in and ``->enter()`` is that it must not re-enable +interrupts at any point (even temporarily) or attempt to change the states of +clock event devices, which the ``->enter()`` callback may do sometimes. + +Once the :c:member:`states` array has been populated, the number of valid +entries in it has to be stored in the :c:member:`state_count` field of the +struct cpuidle_driver object representing the driver. Moreover, if any +entries in the :c:member:`states` array represent "coupled" idle states (that +is, idle states that can only be asked for if multiple related logical CPUs are +idle), the :c:member:`safe_state_index` field in struct cpuidle_driver needs +to be the index of an idle state that is not "coupled" (that is, one that can be +asked for if only one logical CPU is idle). + +In addition to that, if the given ``CPUIdle`` driver is only going to handle a +subset of logical CPUs in the system, the :c:member:`cpumask` field in its +struct cpuidle_driver object must point to the set (mask) of CPUs that will be +handled by it. + +A ``CPUIdle`` driver can only be used after it has been registered. If there +are no "coupled" idle state entries in the driver's :c:member:`states` array, +that can be accomplished by passing the driver's struct cpuidle_driver object +to :c:func:`cpuidle_register_driver()`. Otherwise, :c:func:`cpuidle_register()` +should be used for this purpose. + +However, it also is necessary to register struct cpuidle_device objects for +all of the logical CPUs to be handled by the given ``CPUIdle`` driver with the +help of :c:func:`cpuidle_register_device()` after the driver has been registered +and :c:func:`cpuidle_register_driver()`, unlike :c:func:`cpuidle_register()`, +does not do that automatically. For this reason, the drivers that use +:c:func:`cpuidle_register_driver()` to register themselves must also take care +of registering the struct cpuidle_device objects as needed, so it is generally +recommended to use :c:func:`cpuidle_register()` for ``CPUIdle`` driver +registration in all cases. + +The registration of a struct cpuidle_device object causes the ``CPUIdle`` +``sysfs`` interface to be created and the governor's ``->enable()`` callback to +be invoked for the logical CPU represented by it, so it must take place after +registering the driver that will handle the CPU in question. + +``CPUIdle`` drivers and struct cpuidle_device objects can be unregistered +when they are not necessary any more which allows some resources associated with +them to be released. Due to dependencies between them, all of the +struct cpuidle_device objects representing CPUs handled by the given +``CPUIdle`` driver must be unregistered, with the help of +:c:func:`cpuidle_unregister_device()`, before calling +:c:func:`cpuidle_unregister_driver()` to unregister the driver. Alternatively, +:c:func:`cpuidle_unregister()` can be called to unregister a ``CPUIdle`` driver +along with all of the struct cpuidle_device objects representing CPUs handled +by it. + +``CPUIdle`` drivers can respond to runtime system configuration changes that +lead to modifications of the list of available processor idle states (which can +happen, for example, when the system's power source is switched from AC to +battery or the other way around). Upon a notification of such a change, +a ``CPUIdle`` driver is expected to call :c:func:`cpuidle_pause_and_lock()` to +turn ``CPUIdle`` off temporarily and then :c:func:`cpuidle_disable_device()` for +all of the struct cpuidle_device objects representing CPUs affected by that +change. Next, it can update its :c:member:`states` array in accordance with +the new configuration of the system, call :c:func:`cpuidle_enable_device()` for +all of the relevant struct cpuidle_device objects and invoke +:c:func:`cpuidle_resume_and_unlock()` to allow ``CPUIdle`` to be used again. |