diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/driver-api/thermal/power_allocator.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/driver-api/thermal/power_allocator.rst')
-rw-r--r-- | Documentation/driver-api/thermal/power_allocator.rst | 281 |
1 files changed, 281 insertions, 0 deletions
diff --git a/Documentation/driver-api/thermal/power_allocator.rst b/Documentation/driver-api/thermal/power_allocator.rst new file mode 100644 index 000000000..aa5f66552 --- /dev/null +++ b/Documentation/driver-api/thermal/power_allocator.rst @@ -0,0 +1,281 @@ +================================= +Power allocator governor tunables +================================= + +Trip points +----------- + +The governor works optimally with the following two passive trip points: + +1. "switch on" trip point: temperature above which the governor + control loop starts operating. This is the first passive trip + point of the thermal zone. + +2. "desired temperature" trip point: it should be higher than the + "switch on" trip point. This the target temperature the governor + is controlling for. This is the last passive trip point of the + thermal zone. + +PID Controller +-------------- + +The power allocator governor implements a +Proportional-Integral-Derivative controller (PID controller) with +temperature as the control input and power as the controlled output: + + P_max = k_p * e + k_i * err_integral + k_d * diff_err + sustainable_power + +where + - e = desired_temperature - current_temperature + - err_integral is the sum of previous errors + - diff_err = e - previous_error + +It is similar to the one depicted below:: + + k_d + | + current_temp | + | v + | +----------+ +---+ + | +----->| diff_err |-->| X |------+ + | | +----------+ +---+ | + | | | tdp actor + | | k_i | | get_requested_power() + | | | | | | | + | | | | | | | ... + v | v v v v v + +---+ | +-------+ +---+ +---+ +---+ +----------+ + | S |-----+----->| sum e |----->| X |--->| S |-->| S |-->|power | + +---+ | +-------+ +---+ +---+ +---+ |allocation| + ^ | ^ +----------+ + | | | | | + | | +---+ | | | + | +------->| X |-------------------+ v v + | +---+ granted performance + desired_temperature ^ + | + | + k_po/k_pu + +Sustainable power +----------------- + +An estimate of the sustainable dissipatable power (in mW) should be +provided while registering the thermal zone. This estimates the +sustained power that can be dissipated at the desired control +temperature. This is the maximum sustained power for allocation at +the desired maximum temperature. The actual sustained power can vary +for a number of reasons. The closed loop controller will take care of +variations such as environmental conditions, and some factors related +to the speed-grade of the silicon. `sustainable_power` is therefore +simply an estimate, and may be tuned to affect the aggressiveness of +the thermal ramp. For reference, the sustainable power of a 4" phone +is typically 2000mW, while on a 10" tablet is around 4500mW (may vary +depending on screen size). It is possible to have the power value +expressed in an abstract scale. The sustained power should be aligned +to the scale used by the related cooling devices. + +If you are using device tree, do add it as a property of the +thermal-zone. For example:: + + thermal-zones { + soc_thermal { + polling-delay = <1000>; + polling-delay-passive = <100>; + sustainable-power = <2500>; + ... + +Instead, if the thermal zone is registered from the platform code, pass a +`thermal_zone_params` that has a `sustainable_power`. If no +`thermal_zone_params` were being passed, then something like below +will suffice:: + + static const struct thermal_zone_params tz_params = { + .sustainable_power = 3500, + }; + +and then pass `tz_params` as the 5th parameter to +`thermal_zone_device_register()` + +k_po and k_pu +------------- + +The implementation of the PID controller in the power allocator +thermal governor allows the configuration of two proportional term +constants: `k_po` and `k_pu`. `k_po` is the proportional term +constant during temperature overshoot periods (current temperature is +above "desired temperature" trip point). Conversely, `k_pu` is the +proportional term constant during temperature undershoot periods +(current temperature below "desired temperature" trip point). + +These controls are intended as the primary mechanism for configuring +the permitted thermal "ramp" of the system. For instance, a lower +`k_pu` value will provide a slower ramp, at the cost of capping +available capacity at a low temperature. On the other hand, a high +value of `k_pu` will result in the governor granting very high power +while temperature is low, and may lead to temperature overshooting. + +The default value for `k_pu` is:: + + 2 * sustainable_power / (desired_temperature - switch_on_temp) + +This means that at `switch_on_temp` the output of the controller's +proportional term will be 2 * `sustainable_power`. The default value +for `k_po` is:: + + sustainable_power / (desired_temperature - switch_on_temp) + +Focusing on the proportional and feed forward values of the PID +controller equation we have:: + + P_max = k_p * e + sustainable_power + +The proportional term is proportional to the difference between the +desired temperature and the current one. When the current temperature +is the desired one, then the proportional component is zero and +`P_max` = `sustainable_power`. That is, the system should operate in +thermal equilibrium under constant load. `sustainable_power` is only +an estimate, which is the reason for closed-loop control such as this. + +Expanding `k_pu` we get:: + + P_max = 2 * sustainable_power * (T_set - T) / (T_set - T_on) + + sustainable_power + +where: + + - T_set is the desired temperature + - T is the current temperature + - T_on is the switch on temperature + +When the current temperature is the switch_on temperature, the above +formula becomes:: + + P_max = 2 * sustainable_power * (T_set - T_on) / (T_set - T_on) + + sustainable_power = 2 * sustainable_power + sustainable_power = + 3 * sustainable_power + +Therefore, the proportional term alone linearly decreases power from +3 * `sustainable_power` to `sustainable_power` as the temperature +rises from the switch on temperature to the desired temperature. + +k_i and integral_cutoff +----------------------- + +`k_i` configures the PID loop's integral term constant. This term +allows the PID controller to compensate for long term drift and for +the quantized nature of the output control: cooling devices can't set +the exact power that the governor requests. When the temperature +error is below `integral_cutoff`, errors are accumulated in the +integral term. This term is then multiplied by `k_i` and the result +added to the output of the controller. Typically `k_i` is set low (1 +or 2) and `integral_cutoff` is 0. + +k_d +--- + +`k_d` configures the PID loop's derivative term constant. It's +recommended to leave it as the default: 0. + +Cooling device power API +======================== + +Cooling devices controlled by this governor must supply the additional +"power" API in their `cooling_device_ops`. It consists on three ops: + +1. :: + + int get_requested_power(struct thermal_cooling_device *cdev, + struct thermal_zone_device *tz, u32 *power); + + +@cdev: + The `struct thermal_cooling_device` pointer +@tz: + thermal zone in which we are currently operating +@power: + pointer in which to store the calculated power + +`get_requested_power()` calculates the power requested by the device +in milliwatts and stores it in @power . It should return 0 on +success, -E* on failure. This is currently used by the power +allocator governor to calculate how much power to give to each cooling +device. + +2. :: + + int state2power(struct thermal_cooling_device *cdev, struct + thermal_zone_device *tz, unsigned long state, + u32 *power); + +@cdev: + The `struct thermal_cooling_device` pointer +@tz: + thermal zone in which we are currently operating +@state: + A cooling device state +@power: + pointer in which to store the equivalent power + +Convert cooling device state @state into power consumption in +milliwatts and store it in @power. It should return 0 on success, -E* +on failure. This is currently used by thermal core to calculate the +maximum power that an actor can consume. + +3. :: + + int power2state(struct thermal_cooling_device *cdev, u32 power, + unsigned long *state); + +@cdev: + The `struct thermal_cooling_device` pointer +@power: + power in milliwatts +@state: + pointer in which to store the resulting state + +Calculate a cooling device state that would make the device consume at +most @power mW and store it in @state. It should return 0 on success, +-E* on failure. This is currently used by the thermal core to convert +a given power set by the power allocator governor to a state that the +cooling device can set. It is a function because this conversion may +depend on external factors that may change so this function should the +best conversion given "current circumstances". + +Cooling device weights +---------------------- + +Weights are a mechanism to bias the allocation among cooling +devices. They express the relative power efficiency of different +cooling devices. Higher weight can be used to express higher power +efficiency. Weighting is relative such that if each cooling device +has a weight of one they are considered equal. This is particularly +useful in heterogeneous systems where two cooling devices may perform +the same kind of compute, but with different efficiency. For example, +a system with two different types of processors. + +If the thermal zone is registered using +`thermal_zone_device_register()` (i.e., platform code), then weights +are passed as part of the thermal zone's `thermal_bind_parameters`. +If the platform is registered using device tree, then they are passed +as the `contribution` property of each map in the `cooling-maps` node. + +Limitations of the power allocator governor +=========================================== + +The power allocator governor's PID controller works best if there is a +periodic tick. If you have a driver that calls +`thermal_zone_device_update()` (or anything that ends up calling the +governor's `throttle()` function) repetitively, the governor response +won't be very good. Note that this is not particular to this +governor, step-wise will also misbehave if you call its throttle() +faster than the normal thermal framework tick (due to interrupts for +example) as it will overreact. + +Energy Model requirements +========================= + +Another important thing is the consistent scale of the power values +provided by the cooling devices. All of the cooling devices in a single +thermal zone should have power values reported either in milli-Watts +or scaled to the same 'abstract scale'. |