diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/fb/api.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/fb/api.rst')
-rw-r--r-- | Documentation/fb/api.rst | 307 |
1 files changed, 307 insertions, 0 deletions
diff --git a/Documentation/fb/api.rst b/Documentation/fb/api.rst new file mode 100644 index 000000000..4f00e7196 --- /dev/null +++ b/Documentation/fb/api.rst @@ -0,0 +1,307 @@ +=========================== +The Frame Buffer Device API +=========================== + +Last revised: June 21, 2011 + + +0. Introduction +--------------- + +This document describes the frame buffer API used by applications to interact +with frame buffer devices. In-kernel APIs between device drivers and the frame +buffer core are not described. + +Due to a lack of documentation in the original frame buffer API, drivers +behaviours differ in subtle (and not so subtle) ways. This document describes +the recommended API implementation, but applications should be prepared to +deal with different behaviours. + + +1. Capabilities +--------------- + +Device and driver capabilities are reported in the fixed screen information +capabilities field:: + + struct fb_fix_screeninfo { + ... + __u16 capabilities; /* see FB_CAP_* */ + ... + }; + +Application should use those capabilities to find out what features they can +expect from the device and driver. + +- FB_CAP_FOURCC + +The driver supports the four character code (FOURCC) based format setting API. +When supported, formats are configured using a FOURCC instead of manually +specifying color components layout. + + +2. Types and visuals +-------------------- + +Pixels are stored in memory in hardware-dependent formats. Applications need +to be aware of the pixel storage format in order to write image data to the +frame buffer memory in the format expected by the hardware. + +Formats are described by frame buffer types and visuals. Some visuals require +additional information, which are stored in the variable screen information +bits_per_pixel, grayscale, red, green, blue and transp fields. + +Visuals describe how color information is encoded and assembled to create +macropixels. Types describe how macropixels are stored in memory. The following +types and visuals are supported. + +- FB_TYPE_PACKED_PIXELS + +Macropixels are stored contiguously in a single plane. If the number of bits +per macropixel is not a multiple of 8, whether macropixels are padded to the +next multiple of 8 bits or packed together into bytes depends on the visual. + +Padding at end of lines may be present and is then reported through the fixed +screen information line_length field. + +- FB_TYPE_PLANES + +Macropixels are split across multiple planes. The number of planes is equal to +the number of bits per macropixel, with plane i'th storing i'th bit from all +macropixels. + +Planes are located contiguously in memory. + +- FB_TYPE_INTERLEAVED_PLANES + +Macropixels are split across multiple planes. The number of planes is equal to +the number of bits per macropixel, with plane i'th storing i'th bit from all +macropixels. + +Planes are interleaved in memory. The interleave factor, defined as the +distance in bytes between the beginning of two consecutive interleaved blocks +belonging to different planes, is stored in the fixed screen information +type_aux field. + +- FB_TYPE_FOURCC + +Macropixels are stored in memory as described by the format FOURCC identifier +stored in the variable screen information grayscale field. + +- FB_VISUAL_MONO01 + +Pixels are black or white and stored on a number of bits (typically one) +specified by the variable screen information bpp field. + +Black pixels are represented by all bits set to 1 and white pixels by all bits +set to 0. When the number of bits per pixel is smaller than 8, several pixels +are packed together in a byte. + +FB_VISUAL_MONO01 is currently used with FB_TYPE_PACKED_PIXELS only. + +- FB_VISUAL_MONO10 + +Pixels are black or white and stored on a number of bits (typically one) +specified by the variable screen information bpp field. + +Black pixels are represented by all bits set to 0 and white pixels by all bits +set to 1. When the number of bits per pixel is smaller than 8, several pixels +are packed together in a byte. + +FB_VISUAL_MONO01 is currently used with FB_TYPE_PACKED_PIXELS only. + +- FB_VISUAL_TRUECOLOR + +Pixels are broken into red, green and blue components, and each component +indexes a read-only lookup table for the corresponding value. Lookup tables +are device-dependent, and provide linear or non-linear ramps. + +Each component is stored in a macropixel according to the variable screen +information red, green, blue and transp fields. + +- FB_VISUAL_PSEUDOCOLOR and FB_VISUAL_STATIC_PSEUDOCOLOR + +Pixel values are encoded as indices into a colormap that stores red, green and +blue components. The colormap is read-only for FB_VISUAL_STATIC_PSEUDOCOLOR +and read-write for FB_VISUAL_PSEUDOCOLOR. + +Each pixel value is stored in the number of bits reported by the variable +screen information bits_per_pixel field. + +- FB_VISUAL_DIRECTCOLOR + +Pixels are broken into red, green and blue components, and each component +indexes a programmable lookup table for the corresponding value. + +Each component is stored in a macropixel according to the variable screen +information red, green, blue and transp fields. + +- FB_VISUAL_FOURCC + +Pixels are encoded and interpreted as described by the format FOURCC +identifier stored in the variable screen information grayscale field. + + +3. Screen information +--------------------- + +Screen information are queried by applications using the FBIOGET_FSCREENINFO +and FBIOGET_VSCREENINFO ioctls. Those ioctls take a pointer to a +fb_fix_screeninfo and fb_var_screeninfo structure respectively. + +struct fb_fix_screeninfo stores device independent unchangeable information +about the frame buffer device and the current format. Those information can't +be directly modified by applications, but can be changed by the driver when an +application modifies the format:: + + struct fb_fix_screeninfo { + char id[16]; /* identification string eg "TT Builtin" */ + unsigned long smem_start; /* Start of frame buffer mem */ + /* (physical address) */ + __u32 smem_len; /* Length of frame buffer mem */ + __u32 type; /* see FB_TYPE_* */ + __u32 type_aux; /* Interleave for interleaved Planes */ + __u32 visual; /* see FB_VISUAL_* */ + __u16 xpanstep; /* zero if no hardware panning */ + __u16 ypanstep; /* zero if no hardware panning */ + __u16 ywrapstep; /* zero if no hardware ywrap */ + __u32 line_length; /* length of a line in bytes */ + unsigned long mmio_start; /* Start of Memory Mapped I/O */ + /* (physical address) */ + __u32 mmio_len; /* Length of Memory Mapped I/O */ + __u32 accel; /* Indicate to driver which */ + /* specific chip/card we have */ + __u16 capabilities; /* see FB_CAP_* */ + __u16 reserved[2]; /* Reserved for future compatibility */ + }; + +struct fb_var_screeninfo stores device independent changeable information +about a frame buffer device, its current format and video mode, as well as +other miscellaneous parameters:: + + struct fb_var_screeninfo { + __u32 xres; /* visible resolution */ + __u32 yres; + __u32 xres_virtual; /* virtual resolution */ + __u32 yres_virtual; + __u32 xoffset; /* offset from virtual to visible */ + __u32 yoffset; /* resolution */ + + __u32 bits_per_pixel; /* guess what */ + __u32 grayscale; /* 0 = color, 1 = grayscale, */ + /* >1 = FOURCC */ + struct fb_bitfield red; /* bitfield in fb mem if true color, */ + struct fb_bitfield green; /* else only length is significant */ + struct fb_bitfield blue; + struct fb_bitfield transp; /* transparency */ + + __u32 nonstd; /* != 0 Non standard pixel format */ + + __u32 activate; /* see FB_ACTIVATE_* */ + + __u32 height; /* height of picture in mm */ + __u32 width; /* width of picture in mm */ + + __u32 accel_flags; /* (OBSOLETE) see fb_info.flags */ + + /* Timing: All values in pixclocks, except pixclock (of course) */ + __u32 pixclock; /* pixel clock in ps (pico seconds) */ + __u32 left_margin; /* time from sync to picture */ + __u32 right_margin; /* time from picture to sync */ + __u32 upper_margin; /* time from sync to picture */ + __u32 lower_margin; + __u32 hsync_len; /* length of horizontal sync */ + __u32 vsync_len; /* length of vertical sync */ + __u32 sync; /* see FB_SYNC_* */ + __u32 vmode; /* see FB_VMODE_* */ + __u32 rotate; /* angle we rotate counter clockwise */ + __u32 colorspace; /* colorspace for FOURCC-based modes */ + __u32 reserved[4]; /* Reserved for future compatibility */ + }; + +To modify variable information, applications call the FBIOPUT_VSCREENINFO +ioctl with a pointer to a fb_var_screeninfo structure. If the call is +successful, the driver will update the fixed screen information accordingly. + +Instead of filling the complete fb_var_screeninfo structure manually, +applications should call the FBIOGET_VSCREENINFO ioctl and modify only the +fields they care about. + + +4. Format configuration +----------------------- + +Frame buffer devices offer two ways to configure the frame buffer format: the +legacy API and the FOURCC-based API. + + +The legacy API has been the only frame buffer format configuration API for a +long time and is thus widely used by application. It is the recommended API +for applications when using RGB and grayscale formats, as well as legacy +non-standard formats. + +To select a format, applications set the fb_var_screeninfo bits_per_pixel field +to the desired frame buffer depth. Values up to 8 will usually map to +monochrome, grayscale or pseudocolor visuals, although this is not required. + +- For grayscale formats, applications set the grayscale field to one. The red, + blue, green and transp fields must be set to 0 by applications and ignored by + drivers. Drivers must fill the red, blue and green offsets to 0 and lengths + to the bits_per_pixel value. + +- For pseudocolor formats, applications set the grayscale field to zero. The + red, blue, green and transp fields must be set to 0 by applications and + ignored by drivers. Drivers must fill the red, blue and green offsets to 0 + and lengths to the bits_per_pixel value. + +- For truecolor and directcolor formats, applications set the grayscale field + to zero, and the red, blue, green and transp fields to describe the layout of + color components in memory:: + + struct fb_bitfield { + __u32 offset; /* beginning of bitfield */ + __u32 length; /* length of bitfield */ + __u32 msb_right; /* != 0 : Most significant bit is */ + /* right */ + }; + + Pixel values are bits_per_pixel wide and are split in non-overlapping red, + green, blue and alpha (transparency) components. Location and size of each + component in the pixel value are described by the fb_bitfield offset and + length fields. Offset are computed from the right. + + Pixels are always stored in an integer number of bytes. If the number of + bits per pixel is not a multiple of 8, pixel values are padded to the next + multiple of 8 bits. + +Upon successful format configuration, drivers update the fb_fix_screeninfo +type, visual and line_length fields depending on the selected format. + + +The FOURCC-based API replaces format descriptions by four character codes +(FOURCC). FOURCCs are abstract identifiers that uniquely define a format +without explicitly describing it. This is the only API that supports YUV +formats. Drivers are also encouraged to implement the FOURCC-based API for RGB +and grayscale formats. + +Drivers that support the FOURCC-based API report this capability by setting +the FB_CAP_FOURCC bit in the fb_fix_screeninfo capabilities field. + +FOURCC definitions are located in the linux/videodev2.h header. However, and +despite starting with the V4L2_PIX_FMT_prefix, they are not restricted to V4L2 +and don't require usage of the V4L2 subsystem. FOURCC documentation is +available in Documentation/userspace-api/media/v4l/pixfmt.rst. + +To select a format, applications set the grayscale field to the desired FOURCC. +For YUV formats, they should also select the appropriate colorspace by setting +the colorspace field to one of the colorspaces listed in linux/videodev2.h and +documented in Documentation/userspace-api/media/v4l/colorspaces.rst. + +The red, green, blue and transp fields are not used with the FOURCC-based API. +For forward compatibility reasons applications must zero those fields, and +drivers must ignore them. Values other than 0 may get a meaning in future +extensions. + +Upon successful format configuration, drivers update the fb_fix_screeninfo +type, visual and line_length fields depending on the selected format. The type +and visual fields are set to FB_TYPE_FOURCC and FB_VISUAL_FOURCC respectively. |