diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/filesystems/dax.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/filesystems/dax.rst')
-rw-r--r-- | Documentation/filesystems/dax.rst | 307 |
1 files changed, 307 insertions, 0 deletions
diff --git a/Documentation/filesystems/dax.rst b/Documentation/filesystems/dax.rst new file mode 100644 index 000000000..c04609d8e --- /dev/null +++ b/Documentation/filesystems/dax.rst @@ -0,0 +1,307 @@ +======================= +Direct Access for files +======================= + +Motivation +---------- + +The page cache is usually used to buffer reads and writes to files. +It is also used to provide the pages which are mapped into userspace +by a call to mmap. + +For block devices that are memory-like, the page cache pages would be +unnecessary copies of the original storage. The `DAX` code removes the +extra copy by performing reads and writes directly to the storage device. +For file mappings, the storage device is mapped directly into userspace. + + +Usage +----- + +If you have a block device which supports `DAX`, you can make a filesystem +on it as usual. The `DAX` code currently only supports files with a block +size equal to your kernel's `PAGE_SIZE`, so you may need to specify a block +size when creating the filesystem. + +Currently 5 filesystems support `DAX`: ext2, ext4, xfs, virtiofs and erofs. +Enabling `DAX` on them is different. + +Enabling DAX on ext2 and erofs +------------------------------ + +When mounting the filesystem, use the ``-o dax`` option on the command line or +add 'dax' to the options in ``/etc/fstab``. This works to enable `DAX` on all files +within the filesystem. It is equivalent to the ``-o dax=always`` behavior below. + + +Enabling DAX on xfs and ext4 +---------------------------- + +Summary +------- + + 1. There exists an in-kernel file access mode flag `S_DAX` that corresponds to + the statx flag `STATX_ATTR_DAX`. See the manpage for statx(2) for details + about this access mode. + + 2. There exists a persistent flag `FS_XFLAG_DAX` that can be applied to regular + files and directories. This advisory flag can be set or cleared at any + time, but doing so does not immediately affect the `S_DAX` state. + + 3. If the persistent `FS_XFLAG_DAX` flag is set on a directory, this flag will + be inherited by all regular files and subdirectories that are subsequently + created in this directory. Files and subdirectories that exist at the time + this flag is set or cleared on the parent directory are not modified by + this modification of the parent directory. + + 4. There exist dax mount options which can override `FS_XFLAG_DAX` in the + setting of the `S_DAX` flag. Given underlying storage which supports `DAX` the + following hold: + + ``-o dax=inode`` means "follow `FS_XFLAG_DAX`" and is the default. + + ``-o dax=never`` means "never set `S_DAX`, ignore `FS_XFLAG_DAX`." + + ``-o dax=always`` means "always set `S_DAX` ignore `FS_XFLAG_DAX`." + + ``-o dax`` is a legacy option which is an alias for ``dax=always``. + + .. warning:: + + The option ``-o dax`` may be removed in the future so ``-o dax=always`` is + the preferred method for specifying this behavior. + + .. note:: + + Modifications to and the inheritance behavior of `FS_XFLAG_DAX` remain + the same even when the filesystem is mounted with a dax option. However, + in-core inode state (`S_DAX`) will be overridden until the filesystem is + remounted with dax=inode and the inode is evicted from kernel memory. + + 5. The `S_DAX` policy can be changed via: + + a) Setting the parent directory `FS_XFLAG_DAX` as needed before files are + created + + b) Setting the appropriate dax="foo" mount option + + c) Changing the `FS_XFLAG_DAX` flag on existing regular files and + directories. This has runtime constraints and limitations that are + described in 6) below. + + 6. When changing the `S_DAX` policy via toggling the persistent `FS_XFLAG_DAX` + flag, the change to existing regular files won't take effect until the + files are closed by all processes. + + +Details +------- + +There are 2 per-file dax flags. One is a persistent inode setting (`FS_XFLAG_DAX`) +and the other is a volatile flag indicating the active state of the feature +(`S_DAX`). + +`FS_XFLAG_DAX` is preserved within the filesystem. This persistent config +setting can be set, cleared and/or queried using the `FS_IOC_FS`[`GS`]`ETXATTR` ioctl +(see ioctl_xfs_fsgetxattr(2)) or an utility such as 'xfs_io'. + +New files and directories automatically inherit `FS_XFLAG_DAX` from +their parent directory **when created**. Therefore, setting `FS_XFLAG_DAX` at +directory creation time can be used to set a default behavior for an entire +sub-tree. + +To clarify inheritance, here are 3 examples: + +Example A: + +.. code-block:: shell + + mkdir -p a/b/c + xfs_io -c 'chattr +x' a + mkdir a/b/c/d + mkdir a/e + + ------[outcome]------ + + dax: a,e + no dax: b,c,d + +Example B: + +.. code-block:: shell + + mkdir a + xfs_io -c 'chattr +x' a + mkdir -p a/b/c/d + + ------[outcome]------ + + dax: a,b,c,d + no dax: + +Example C: + +.. code-block:: shell + + mkdir -p a/b/c + xfs_io -c 'chattr +x' c + mkdir a/b/c/d + + ------[outcome]------ + + dax: c,d + no dax: a,b + +The current enabled state (`S_DAX`) is set when a file inode is instantiated in +memory by the kernel. It is set based on the underlying media support, the +value of `FS_XFLAG_DAX` and the filesystem's dax mount option. + +statx can be used to query `S_DAX`. + +.. note:: + + That only regular files will ever have `S_DAX` set and therefore statx + will never indicate that `S_DAX` is set on directories. + +Setting the `FS_XFLAG_DAX` flag (specifically or through inheritance) occurs even +if the underlying media does not support dax and/or the filesystem is +overridden with a mount option. + + +Enabling DAX on virtiofs +---------------------------- +The semantic of DAX on virtiofs is basically equal to that on ext4 and xfs, +except that when '-o dax=inode' is specified, virtiofs client derives the hint +whether DAX shall be enabled or not from virtiofs server through FUSE protocol, +rather than the persistent `FS_XFLAG_DAX` flag. That is, whether DAX shall be +enabled or not is completely determined by virtiofs server, while virtiofs +server itself may deploy various algorithm making this decision, e.g. depending +on the persistent `FS_XFLAG_DAX` flag on the host. + +It is still supported to set or clear persistent `FS_XFLAG_DAX` flag inside +guest, but it is not guaranteed that DAX will be enabled or disabled for +corresponding file then. Users inside guest still need to call statx(2) and +check the statx flag `STATX_ATTR_DAX` to see if DAX is enabled for this file. + + +Implementation Tips for Block Driver Writers +-------------------------------------------- + +To support `DAX` in your block driver, implement the 'direct_access' +block device operation. It is used to translate the sector number +(expressed in units of 512-byte sectors) to a page frame number (pfn) +that identifies the physical page for the memory. It also returns a +kernel virtual address that can be used to access the memory. + +The direct_access method takes a 'size' parameter that indicates the +number of bytes being requested. The function should return the number +of bytes that can be contiguously accessed at that offset. It may also +return a negative errno if an error occurs. + +In order to support this method, the storage must be byte-accessible by +the CPU at all times. If your device uses paging techniques to expose +a large amount of memory through a smaller window, then you cannot +implement direct_access. Equally, if your device can occasionally +stall the CPU for an extended period, you should also not attempt to +implement direct_access. + +These block devices may be used for inspiration: +- brd: RAM backed block device driver +- dcssblk: s390 dcss block device driver +- pmem: NVDIMM persistent memory driver + + +Implementation Tips for Filesystem Writers +------------------------------------------ + +Filesystem support consists of: + +* Adding support to mark inodes as being `DAX` by setting the `S_DAX` flag in + i_flags +* Implementing ->read_iter and ->write_iter operations which use + :c:func:`dax_iomap_rw()` when inode has `S_DAX` flag set +* Implementing an mmap file operation for `DAX` files which sets the + `VM_MIXEDMAP` and `VM_HUGEPAGE` flags on the `VMA`, and setting the vm_ops to + include handlers for fault, pmd_fault, page_mkwrite, pfn_mkwrite. These + handlers should probably call :c:func:`dax_iomap_fault()` passing the + appropriate fault size and iomap operations. +* Calling :c:func:`iomap_zero_range()` passing appropriate iomap operations + instead of :c:func:`block_truncate_page()` for `DAX` files +* Ensuring that there is sufficient locking between reads, writes, + truncates and page faults + +The iomap handlers for allocating blocks must make sure that allocated blocks +are zeroed out and converted to written extents before being returned to avoid +exposure of uninitialized data through mmap. + +These filesystems may be used for inspiration: + +.. seealso:: + + ext2: see Documentation/filesystems/ext2.rst + +.. seealso:: + + xfs: see Documentation/admin-guide/xfs.rst + +.. seealso:: + + ext4: see Documentation/filesystems/ext4/ + + +Handling Media Errors +--------------------- + +The libnvdimm subsystem stores a record of known media error locations for +each pmem block device (in gendisk->badblocks). If we fault at such location, +or one with a latent error not yet discovered, the application can expect +to receive a `SIGBUS`. Libnvdimm also allows clearing of these errors by simply +writing the affected sectors (through the pmem driver, and if the underlying +NVDIMM supports the clear_poison DSM defined by ACPI). + +Since `DAX` IO normally doesn't go through the ``driver/bio`` path, applications or +sysadmins have an option to restore the lost data from a prior ``backup/inbuilt`` +redundancy in the following ways: + +1. Delete the affected file, and restore from a backup (sysadmin route): + This will free the filesystem blocks that were being used by the file, + and the next time they're allocated, they will be zeroed first, which + happens through the driver, and will clear bad sectors. + +2. Truncate or hole-punch the part of the file that has a bad-block (at least + an entire aligned sector has to be hole-punched, but not necessarily an + entire filesystem block). + +These are the two basic paths that allow `DAX` filesystems to continue operating +in the presence of media errors. More robust error recovery mechanisms can be +built on top of this in the future, for example, involving redundancy/mirroring +provided at the block layer through DM, or additionally, at the filesystem +level. These would have to rely on the above two tenets, that error clearing +can happen either by sending an IO through the driver, or zeroing (also through +the driver). + + +Shortcomings +------------ + +Even if the kernel or its modules are stored on a filesystem that supports +`DAX` on a block device that supports `DAX`, they will still be copied into RAM. + +The DAX code does not work correctly on architectures which have virtually +mapped caches such as ARM, MIPS and SPARC. + +Calling :c:func:`get_user_pages()` on a range of user memory that has been +mmaped from a `DAX` file will fail when there are no 'struct page' to describe +those pages. This problem has been addressed in some device drivers +by adding optional struct page support for pages under the control of +the driver (see `CONFIG_NVDIMM_PFN` in ``drivers/nvdimm`` for an example of +how to do this). In the non struct page cases `O_DIRECT` reads/writes to +those memory ranges from a non-`DAX` file will fail + + +.. note:: + + `O_DIRECT` reads/writes _of a `DAX` file do work, it is the memory that + is being accessed that is key here). Other things that will not work in + the non struct page case include RDMA, :c:func:`sendfile()` and + :c:func:`splice()`. |