diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/filesystems/fiemap.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/filesystems/fiemap.rst')
-rw-r--r-- | Documentation/filesystems/fiemap.rst | 236 |
1 files changed, 236 insertions, 0 deletions
diff --git a/Documentation/filesystems/fiemap.rst b/Documentation/filesystems/fiemap.rst new file mode 100644 index 000000000..93fc96f76 --- /dev/null +++ b/Documentation/filesystems/fiemap.rst @@ -0,0 +1,236 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============ +Fiemap Ioctl +============ + +The fiemap ioctl is an efficient method for userspace to get file +extent mappings. Instead of block-by-block mapping (such as bmap), fiemap +returns a list of extents. + + +Request Basics +-------------- + +A fiemap request is encoded within struct fiemap:: + + struct fiemap { + __u64 fm_start; /* logical offset (inclusive) at + * which to start mapping (in) */ + __u64 fm_length; /* logical length of mapping which + * userspace cares about (in) */ + __u32 fm_flags; /* FIEMAP_FLAG_* flags for request (in/out) */ + __u32 fm_mapped_extents; /* number of extents that were + * mapped (out) */ + __u32 fm_extent_count; /* size of fm_extents array (in) */ + __u32 fm_reserved; + struct fiemap_extent fm_extents[0]; /* array of mapped extents (out) */ + }; + + +fm_start, and fm_length specify the logical range within the file +which the process would like mappings for. Extents returned mirror +those on disk - that is, the logical offset of the 1st returned extent +may start before fm_start, and the range covered by the last returned +extent may end after fm_length. All offsets and lengths are in bytes. + +Certain flags to modify the way in which mappings are looked up can be +set in fm_flags. If the kernel doesn't understand some particular +flags, it will return EBADR and the contents of fm_flags will contain +the set of flags which caused the error. If the kernel is compatible +with all flags passed, the contents of fm_flags will be unmodified. +It is up to userspace to determine whether rejection of a particular +flag is fatal to its operation. This scheme is intended to allow the +fiemap interface to grow in the future but without losing +compatibility with old software. + +fm_extent_count specifies the number of elements in the fm_extents[] array +that can be used to return extents. If fm_extent_count is zero, then the +fm_extents[] array is ignored (no extents will be returned), and the +fm_mapped_extents count will hold the number of extents needed in +fm_extents[] to hold the file's current mapping. Note that there is +nothing to prevent the file from changing between calls to FIEMAP. + +The following flags can be set in fm_flags: + +FIEMAP_FLAG_SYNC + If this flag is set, the kernel will sync the file before mapping extents. + +FIEMAP_FLAG_XATTR + If this flag is set, the extents returned will describe the inodes + extended attribute lookup tree, instead of its data tree. + + +Extent Mapping +-------------- + +Extent information is returned within the embedded fm_extents array +which userspace must allocate along with the fiemap structure. The +number of elements in the fiemap_extents[] array should be passed via +fm_extent_count. The number of extents mapped by kernel will be +returned via fm_mapped_extents. If the number of fiemap_extents +allocated is less than would be required to map the requested range, +the maximum number of extents that can be mapped in the fm_extent[] +array will be returned and fm_mapped_extents will be equal to +fm_extent_count. In that case, the last extent in the array will not +complete the requested range and will not have the FIEMAP_EXTENT_LAST +flag set (see the next section on extent flags). + +Each extent is described by a single fiemap_extent structure as +returned in fm_extents:: + + struct fiemap_extent { + __u64 fe_logical; /* logical offset in bytes for the start of + * the extent */ + __u64 fe_physical; /* physical offset in bytes for the start + * of the extent */ + __u64 fe_length; /* length in bytes for the extent */ + __u64 fe_reserved64[2]; + __u32 fe_flags; /* FIEMAP_EXTENT_* flags for this extent */ + __u32 fe_reserved[3]; + }; + +All offsets and lengths are in bytes and mirror those on disk. It is valid +for an extents logical offset to start before the request or its logical +length to extend past the request. Unless FIEMAP_EXTENT_NOT_ALIGNED is +returned, fe_logical, fe_physical, and fe_length will be aligned to the +block size of the file system. With the exception of extents flagged as +FIEMAP_EXTENT_MERGED, adjacent extents will not be merged. + +The fe_flags field contains flags which describe the extent returned. +A special flag, FIEMAP_EXTENT_LAST is always set on the last extent in +the file so that the process making fiemap calls can determine when no +more extents are available, without having to call the ioctl again. + +Some flags are intentionally vague and will always be set in the +presence of other more specific flags. This way a program looking for +a general property does not have to know all existing and future flags +which imply that property. + +For example, if FIEMAP_EXTENT_DATA_INLINE or FIEMAP_EXTENT_DATA_TAIL +are set, FIEMAP_EXTENT_NOT_ALIGNED will also be set. A program looking +for inline or tail-packed data can key on the specific flag. Software +which simply cares not to try operating on non-aligned extents +however, can just key on FIEMAP_EXTENT_NOT_ALIGNED, and not have to +worry about all present and future flags which might imply unaligned +data. Note that the opposite is not true - it would be valid for +FIEMAP_EXTENT_NOT_ALIGNED to appear alone. + +FIEMAP_EXTENT_LAST + This is generally the last extent in the file. A mapping attempt past + this extent may return nothing. Some implementations set this flag to + indicate this extent is the last one in the range queried by the user + (via fiemap->fm_length). + +FIEMAP_EXTENT_UNKNOWN + The location of this extent is currently unknown. This may indicate + the data is stored on an inaccessible volume or that no storage has + been allocated for the file yet. + +FIEMAP_EXTENT_DELALLOC + This will also set FIEMAP_EXTENT_UNKNOWN. + + Delayed allocation - while there is data for this extent, its + physical location has not been allocated yet. + +FIEMAP_EXTENT_ENCODED + This extent does not consist of plain filesystem blocks but is + encoded (e.g. encrypted or compressed). Reading the data in this + extent via I/O to the block device will have undefined results. + +Note that it is *always* undefined to try to update the data +in-place by writing to the indicated location without the +assistance of the filesystem, or to access the data using the +information returned by the FIEMAP interface while the filesystem +is mounted. In other words, user applications may only read the +extent data via I/O to the block device while the filesystem is +unmounted, and then only if the FIEMAP_EXTENT_ENCODED flag is +clear; user applications must not try reading or writing to the +filesystem via the block device under any other circumstances. + +FIEMAP_EXTENT_DATA_ENCRYPTED + This will also set FIEMAP_EXTENT_ENCODED + The data in this extent has been encrypted by the file system. + +FIEMAP_EXTENT_NOT_ALIGNED + Extent offsets and length are not guaranteed to be block aligned. + +FIEMAP_EXTENT_DATA_INLINE + This will also set FIEMAP_EXTENT_NOT_ALIGNED + Data is located within a meta data block. + +FIEMAP_EXTENT_DATA_TAIL + This will also set FIEMAP_EXTENT_NOT_ALIGNED + Data is packed into a block with data from other files. + +FIEMAP_EXTENT_UNWRITTEN + Unwritten extent - the extent is allocated but its data has not been + initialized. This indicates the extent's data will be all zero if read + through the filesystem but the contents are undefined if read directly from + the device. + +FIEMAP_EXTENT_MERGED + This will be set when a file does not support extents, i.e., it uses a block + based addressing scheme. Since returning an extent for each block back to + userspace would be highly inefficient, the kernel will try to merge most + adjacent blocks into 'extents'. + + +VFS -> File System Implementation +--------------------------------- + +File systems wishing to support fiemap must implement a ->fiemap callback on +their inode_operations structure. The fs ->fiemap call is responsible for +defining its set of supported fiemap flags, and calling a helper function on +each discovered extent:: + + struct inode_operations { + ... + + int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, + u64 len); + +->fiemap is passed struct fiemap_extent_info which describes the +fiemap request:: + + struct fiemap_extent_info { + unsigned int fi_flags; /* Flags as passed from user */ + unsigned int fi_extents_mapped; /* Number of mapped extents */ + unsigned int fi_extents_max; /* Size of fiemap_extent array */ + struct fiemap_extent *fi_extents_start; /* Start of fiemap_extent array */ + }; + +It is intended that the file system should not need to access any of this +structure directly. Filesystem handlers should be tolerant to signals and return +EINTR once fatal signal received. + + +Flag checking should be done at the beginning of the ->fiemap callback via the +fiemap_prep() helper:: + + int fiemap_prep(struct inode *inode, struct fiemap_extent_info *fieinfo, + u64 start, u64 *len, u32 supported_flags); + +The struct fieinfo should be passed in as received from ioctl_fiemap(). The +set of fiemap flags which the fs understands should be passed via fs_flags. If +fiemap_prep finds invalid user flags, it will place the bad values in +fieinfo->fi_flags and return -EBADR. If the file system gets -EBADR, from +fiemap_prep(), it should immediately exit, returning that error back to +ioctl_fiemap(). Additionally the range is validate against the supported +maximum file size. + + +For each extent in the request range, the file system should call +the helper function, fiemap_fill_next_extent():: + + int fiemap_fill_next_extent(struct fiemap_extent_info *info, u64 logical, + u64 phys, u64 len, u32 flags, u32 dev); + +fiemap_fill_next_extent() will use the passed values to populate the +next free extent in the fm_extents array. 'General' extent flags will +automatically be set from specific flags on behalf of the calling file +system so that the userspace API is not broken. + +fiemap_fill_next_extent() returns 0 on success, and 1 when the +user-supplied fm_extents array is full. If an error is encountered +while copying the extent to user memory, -EFAULT will be returned. |