diff options
| author | 2023-02-21 18:24:12 -0800 | |
|---|---|---|
| committer | 2023-02-21 18:24:12 -0800 | |
| commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
| tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/firmware-guide/acpi/apei | |
| download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip | |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/firmware-guide/acpi/apei')
| -rw-r--r-- | Documentation/firmware-guide/acpi/apei/einj.rst | 204 | ||||
| -rw-r--r-- | Documentation/firmware-guide/acpi/apei/output_format.rst | 150 |
2 files changed, 354 insertions, 0 deletions
diff --git a/Documentation/firmware-guide/acpi/apei/einj.rst b/Documentation/firmware-guide/acpi/apei/einj.rst new file mode 100644 index 000000000..d6b61d22f --- /dev/null +++ b/Documentation/firmware-guide/acpi/apei/einj.rst @@ -0,0 +1,204 @@ +.. SPDX-License-Identifier: GPL-2.0 + +==================== +APEI Error INJection +==================== + +EINJ provides a hardware error injection mechanism. It is very useful +for debugging and testing APEI and RAS features in general. + +You need to check whether your BIOS supports EINJ first. For that, look +for early boot messages similar to this one:: + + ACPI: EINJ 0x000000007370A000 000150 (v01 INTEL 00000001 INTL 00000001) + +which shows that the BIOS is exposing an EINJ table - it is the +mechanism through which the injection is done. + +Alternatively, look in /sys/firmware/acpi/tables for an "EINJ" file, +which is a different representation of the same thing. + +It doesn't necessarily mean that EINJ is not supported if those above +don't exist: before you give up, go into BIOS setup to see if the BIOS +has an option to enable error injection. Look for something called WHEA +or similar. Often, you need to enable an ACPI5 support option prior, in +order to see the APEI,EINJ,... functionality supported and exposed by +the BIOS menu. + +To use EINJ, make sure the following are options enabled in your kernel +configuration:: + + CONFIG_DEBUG_FS + CONFIG_ACPI_APEI + CONFIG_ACPI_APEI_EINJ + +The EINJ user interface is in <debugfs mount point>/apei/einj. + +The following files belong to it: + +- available_error_type + + This file shows which error types are supported: + + ================ =================================== + Error Type Value Error Description + ================ =================================== + 0x00000001 Processor Correctable + 0x00000002 Processor Uncorrectable non-fatal + 0x00000004 Processor Uncorrectable fatal + 0x00000008 Memory Correctable + 0x00000010 Memory Uncorrectable non-fatal + 0x00000020 Memory Uncorrectable fatal + 0x00000040 PCI Express Correctable + 0x00000080 PCI Express Uncorrectable non-fatal + 0x00000100 PCI Express Uncorrectable fatal + 0x00000200 Platform Correctable + 0x00000400 Platform Uncorrectable non-fatal + 0x00000800 Platform Uncorrectable fatal + ================ =================================== + + The format of the file contents are as above, except present are only + the available error types. + +- error_type + + Set the value of the error type being injected. Possible error types + are defined in the file available_error_type above. + +- error_inject + + Write any integer to this file to trigger the error injection. Make + sure you have specified all necessary error parameters, i.e. this + write should be the last step when injecting errors. + +- flags + + Present for kernel versions 3.13 and above. Used to specify which + of param{1..4} are valid and should be used by the firmware during + injection. Value is a bitmask as specified in ACPI5.0 spec for the + SET_ERROR_TYPE_WITH_ADDRESS data structure: + + Bit 0 + Processor APIC field valid (see param3 below). + Bit 1 + Memory address and mask valid (param1 and param2). + Bit 2 + PCIe (seg,bus,dev,fn) valid (see param4 below). + + If set to zero, legacy behavior is mimicked where the type of + injection specifies just one bit set, and param1 is multiplexed. + +- param1 + + This file is used to set the first error parameter value. Its effect + depends on the error type specified in error_type. For example, if + error type is memory related type, the param1 should be a valid + physical memory address. [Unless "flag" is set - see above] + +- param2 + + Same use as param1 above. For example, if error type is of memory + related type, then param2 should be a physical memory address mask. + Linux requires page or narrower granularity, say, 0xfffffffffffff000. + +- param3 + + Used when the 0x1 bit is set in "flags" to specify the APIC id + +- param4 + Used when the 0x4 bit is set in "flags" to specify target PCIe device + +- notrigger + + The error injection mechanism is a two-step process. First inject the + error, then perform some actions to trigger it. Setting "notrigger" + to 1 skips the trigger phase, which *may* allow the user to cause the + error in some other context by a simple access to the CPU, memory + location, or device that is the target of the error injection. Whether + this actually works depends on what operations the BIOS actually + includes in the trigger phase. + +BIOS versions based on the ACPI 4.0 specification have limited options +in controlling where the errors are injected. Your BIOS may support an +extension (enabled with the param_extension=1 module parameter, or boot +command line einj.param_extension=1). This allows the address and mask +for memory injections to be specified by the param1 and param2 files in +apei/einj. + +BIOS versions based on the ACPI 5.0 specification have more control over +the target of the injection. For processor-related errors (type 0x1, 0x2 +and 0x4), you can set flags to 0x3 (param3 for bit 0, and param1 and +param2 for bit 1) so that you have more information added to the error +signature being injected. The actual data passed is this:: + + memory_address = param1; + memory_address_range = param2; + apicid = param3; + pcie_sbdf = param4; + +For memory errors (type 0x8, 0x10 and 0x20) the address is set using +param1 with a mask in param2 (0x0 is equivalent to all ones). For PCI +express errors (type 0x40, 0x80 and 0x100) the segment, bus, device and +function are specified using param1:: + + 31 24 23 16 15 11 10 8 7 0 + +-------------------------------------------------+ + | segment | bus | device | function | reserved | + +-------------------------------------------------+ + +Anyway, you get the idea, if there's doubt just take a look at the code +in drivers/acpi/apei/einj.c. + +An ACPI 5.0 BIOS may also allow vendor-specific errors to be injected. +In this case a file named vendor will contain identifying information +from the BIOS that hopefully will allow an application wishing to use +the vendor-specific extension to tell that they are running on a BIOS +that supports it. All vendor extensions have the 0x80000000 bit set in +error_type. A file vendor_flags controls the interpretation of param1 +and param2 (1 = PROCESSOR, 2 = MEMORY, 4 = PCI). See your BIOS vendor +documentation for details (and expect changes to this API if vendors +creativity in using this feature expands beyond our expectations). + + +An error injection example:: + + # cd /sys/kernel/debug/apei/einj + # cat available_error_type # See which errors can be injected + 0x00000002 Processor Uncorrectable non-fatal + 0x00000008 Memory Correctable + 0x00000010 Memory Uncorrectable non-fatal + # echo 0x12345000 > param1 # Set memory address for injection + # echo 0xfffffffffffff000 > param2 # Mask - anywhere in this page + # echo 0x8 > error_type # Choose correctable memory error + # echo 1 > error_inject # Inject now + +You should see something like this in dmesg:: + + [22715.830801] EDAC sbridge MC3: HANDLING MCE MEMORY ERROR + [22715.834759] EDAC sbridge MC3: CPU 0: Machine Check Event: 0 Bank 7: 8c00004000010090 + [22715.834759] EDAC sbridge MC3: TSC 0 + [22715.834759] EDAC sbridge MC3: ADDR 12345000 EDAC sbridge MC3: MISC 144780c86 + [22715.834759] EDAC sbridge MC3: PROCESSOR 0:306e7 TIME 1422553404 SOCKET 0 APIC 0 + [22716.616173] EDAC MC3: 1 CE memory read error on CPU_SrcID#0_Channel#0_DIMM#0 (channel:0 slot:0 page:0x12345 offset:0x0 grain:32 syndrome:0x0 - area:DRAM err_code:0001:0090 socket:0 channel_mask:1 rank:0) + +Special notes for injection into SGX enclaves: + +There may be a separate BIOS setup option to enable SGX injection. + +The injection process consists of setting some special memory controller +trigger that will inject the error on the next write to the target +address. But the h/w prevents any software outside of an SGX enclave +from accessing enclave pages (even BIOS SMM mode). + +The following sequence can be used: + 1) Determine physical address of enclave page + 2) Use "notrigger=1" mode to inject (this will setup + the injection address, but will not actually inject) + 3) Enter the enclave + 4) Store data to the virtual address matching physical address from step 1 + 5) Execute CLFLUSH for that virtual address + 6) Spin delay for 250ms + 7) Read from the virtual address. This will trigger the error + +For more information about EINJ, please refer to ACPI specification +version 4.0, section 17.5 and ACPI 5.0, section 18.6. diff --git a/Documentation/firmware-guide/acpi/apei/output_format.rst b/Documentation/firmware-guide/acpi/apei/output_format.rst new file mode 100644 index 000000000..c2e7ebddb --- /dev/null +++ b/Documentation/firmware-guide/acpi/apei/output_format.rst @@ -0,0 +1,150 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================== +APEI output format +================== + +APEI uses printk as hardware error reporting interface, the output +format is as follow:: + + <error record> := + APEI generic hardware error status + severity: <integer>, <severity string> + section: <integer>, severity: <integer>, <severity string> + flags: <integer> + <section flags strings> + fru_id: <uuid string> + fru_text: <string> + section_type: <section type string> + <section data> + + <severity string>* := recoverable | fatal | corrected | info + + <section flags strings># := + [primary][, containment warning][, reset][, threshold exceeded]\ + [, resource not accessible][, latent error] + + <section type string> := generic processor error | memory error | \ + PCIe error | unknown, <uuid string> + + <section data> := + <generic processor section data> | <memory section data> | \ + <pcie section data> | <null> + + <generic processor section data> := + [processor_type: <integer>, <proc type string>] + [processor_isa: <integer>, <proc isa string>] + [error_type: <integer> + <proc error type strings>] + [operation: <integer>, <proc operation string>] + [flags: <integer> + <proc flags strings>] + [level: <integer>] + [version_info: <integer>] + [processor_id: <integer>] + [target_address: <integer>] + [requestor_id: <integer>] + [responder_id: <integer>] + [IP: <integer>] + + <proc type string>* := IA32/X64 | IA64 + + <proc isa string>* := IA32 | IA64 | X64 + + <processor error type strings># := + [cache error][, TLB error][, bus error][, micro-architectural error] + + <proc operation string>* := unknown or generic | data read | data write | \ + instruction execution + + <proc flags strings># := + [restartable][, precise IP][, overflow][, corrected] + + <memory section data> := + [error_status: <integer>] + [physical_address: <integer>] + [physical_address_mask: <integer>] + [node: <integer>] + [card: <integer>] + [module: <integer>] + [bank: <integer>] + [device: <integer>] + [row: <integer>] + [column: <integer>] + [bit_position: <integer>] + [requestor_id: <integer>] + [responder_id: <integer>] + [target_id: <integer>] + [error_type: <integer>, <mem error type string>] + + <mem error type string>* := + unknown | no error | single-bit ECC | multi-bit ECC | \ + single-symbol chipkill ECC | multi-symbol chipkill ECC | master abort | \ + target abort | parity error | watchdog timeout | invalid address | \ + mirror Broken | memory sparing | scrub corrected error | \ + scrub uncorrected error + + <pcie section data> := + [port_type: <integer>, <pcie port type string>] + [version: <integer>.<integer>] + [command: <integer>, status: <integer>] + [device_id: <integer>:<integer>:<integer>.<integer> + slot: <integer> + secondary_bus: <integer> + vendor_id: <integer>, device_id: <integer> + class_code: <integer>] + [serial number: <integer>, <integer>] + [bridge: secondary_status: <integer>, control: <integer>] + [aer_status: <integer>, aer_mask: <integer> + <aer status string> + [aer_uncor_severity: <integer>] + aer_layer=<aer layer string>, aer_agent=<aer agent string> + aer_tlp_header: <integer> <integer> <integer> <integer>] + + <pcie port type string>* := PCIe end point | legacy PCI end point | \ + unknown | unknown | root port | upstream switch port | \ + downstream switch port | PCIe to PCI/PCI-X bridge | \ + PCI/PCI-X to PCIe bridge | root complex integrated endpoint device | \ + root complex event collector + + if section severity is fatal or recoverable + <aer status string># := + unknown | unknown | unknown | unknown | Data Link Protocol | \ + unknown | unknown | unknown | unknown | unknown | unknown | unknown | \ + Poisoned TLP | Flow Control Protocol | Completion Timeout | \ + Completer Abort | Unexpected Completion | Receiver Overflow | \ + Malformed TLP | ECRC | Unsupported Request + else + <aer status string># := + Receiver Error | unknown | unknown | unknown | unknown | unknown | \ + Bad TLP | Bad DLLP | RELAY_NUM Rollover | unknown | unknown | unknown | \ + Replay Timer Timeout | Advisory Non-Fatal + fi + + <aer layer string> := + Physical Layer | Data Link Layer | Transaction Layer + + <aer agent string> := + Receiver ID | Requester ID | Completer ID | Transmitter ID + +Where, [] designate corresponding content is optional + +All <field string> description with * has the following format:: + + field: <integer>, <field string> + +Where value of <integer> should be the position of "string" in <field +string> description. Otherwise, <field string> will be "unknown". + +All <field strings> description with # has the following format:: + + field: <integer> + <field strings> + +Where each string in <fields strings> corresponding to one set bit of +<integer>. The bit position is the position of "string" in <field +strings> description. + +For more detailed explanation of every field, please refer to UEFI +specification version 2.3 or later, section Appendix N: Common +Platform Error Record. |
