diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/hid/hid-sensor.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/hid/hid-sensor.rst')
-rw-r--r-- | Documentation/hid/hid-sensor.rst | 242 |
1 files changed, 242 insertions, 0 deletions
diff --git a/Documentation/hid/hid-sensor.rst b/Documentation/hid/hid-sensor.rst new file mode 100644 index 000000000..c1c9b8d8d --- /dev/null +++ b/Documentation/hid/hid-sensor.rst @@ -0,0 +1,242 @@ +===================== +HID Sensors Framework +===================== +HID sensor framework provides necessary interfaces to implement sensor drivers, +which are connected to a sensor hub. The sensor hub is a HID device and it provides +a report descriptor conforming to HID 1.12 sensor usage tables. + +Description from the HID 1.12 "HID Sensor Usages" specification: +"Standardization of HID usages for sensors would allow (but not require) sensor +hardware vendors to provide a consistent Plug And Play interface at the USB boundary, +thereby enabling some operating systems to incorporate common device drivers that +could be reused between vendors, alleviating any need for the vendors to provide +the drivers themselves." + +This specification describes many usage IDs, which describe the type of sensor +and also the individual data fields. Each sensor can have variable number of +data fields. The length and order is specified in the report descriptor. For +example a part of report descriptor can look like:: + + INPUT(1)[INPUT] + .. + Field(2) + Physical(0020.0073) + Usage(1) + 0020.045f + Logical Minimum(-32767) + Logical Maximum(32767) + Report Size(8) + Report Count(1) + Report Offset(16) + Flags(Variable Absolute) + .. + .. + +The report is indicating "sensor page (0x20)" contains an accelerometer-3D (0x73). +This accelerometer-3D has some fields. Here for example field 2 is motion intensity +(0x045f) with a logical minimum value of -32767 and logical maximum of 32767. The +order of fields and length of each field is important as the input event raw +data will use this format. + + +Implementation +============== + +This specification defines many different types of sensors with different sets of +data fields. It is difficult to have a common input event to user space applications, +for different sensors. For example an accelerometer can send X,Y and Z data, whereas +an ambient light sensor can send illumination data. +So the implementation has two parts: + +- Core HID driver +- Individual sensor processing part (sensor drivers) + +Core driver +----------- +The core driver (hid-sensor-hub) registers as a HID driver. It parses +report descriptors and identifies all the sensors present. It adds an MFD device +with name HID-SENSOR-xxxx (where xxxx is usage id from the specification). + +For example: + +HID-SENSOR-200073 is registered for an Accelerometer 3D driver. + +So if any driver with this name is inserted, then the probe routine for that +function will be called. So an accelerometer processing driver can register +with this name and will be probed if there is an accelerometer-3D detected. + +The core driver provides a set of APIs which can be used by the processing +drivers to register and get events for that usage id. Also it provides parsing +functions, which get and set each input/feature/output report. + +Individual sensor processing part (sensor drivers) +-------------------------------------------------- + +The processing driver will use an interface provided by the core driver to parse +the report and get the indexes of the fields and also can get events. This driver +can use IIO interface to use the standard ABI defined for a type of sensor. + + +Core driver Interface +===================== + +Callback structure:: + + Each processing driver can use this structure to set some callbacks. + int (*suspend)(..): Callback when HID suspend is received + int (*resume)(..): Callback when HID resume is received + int (*capture_sample)(..): Capture a sample for one of its data fields + int (*send_event)(..): One complete event is received which can have + multiple data fields. + +Registration functions:: + + int sensor_hub_register_callback(struct hid_sensor_hub_device *hsdev, + u32 usage_id, + struct hid_sensor_hub_callbacks *usage_callback): + +Registers callbacks for a usage id. The callback functions are not allowed +to sleep:: + + + int sensor_hub_remove_callback(struct hid_sensor_hub_device *hsdev, + u32 usage_id): + +Removes callbacks for a usage id. + + +Parsing function:: + + int sensor_hub_input_get_attribute_info(struct hid_sensor_hub_device *hsdev, + u8 type, + u32 usage_id, u32 attr_usage_id, + struct hid_sensor_hub_attribute_info *info); + +A processing driver can look for some field of interest and check if it exists +in a report descriptor. If it exists it will store necessary information +so that fields can be set or get individually. +These indexes avoid searching every time and getting field index to get or set. + + +Set Feature report:: + + int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_id, + u32 field_index, s32 value); + +This interface is used to set a value for a field in feature report. For example +if there is a field report_interval, which is parsed by a call to +sensor_hub_input_get_attribute_info before, then it can directly set that +individual field:: + + + int sensor_hub_get_feature(struct hid_sensor_hub_device *hsdev, u32 report_id, + u32 field_index, s32 *value); + +This interface is used to get a value for a field in input report. For example +if there is a field report_interval, which is parsed by a call to +sensor_hub_input_get_attribute_info before, then it can directly get that +individual field value:: + + + int sensor_hub_input_attr_get_raw_value(struct hid_sensor_hub_device *hsdev, + u32 usage_id, + u32 attr_usage_id, u32 report_id); + +This is used to get a particular field value through input reports. For example +accelerometer wants to poll X axis value, then it can call this function with +the usage id of X axis. HID sensors can provide events, so this is not necessary +to poll for any field. If there is some new sample, the core driver will call +registered callback function to process the sample. + + +---------- + +HID Custom and generic Sensors +------------------------------ + + +HID Sensor specification defines two special sensor usage types. Since they +don't represent a standard sensor, it is not possible to define using Linux IIO +type interfaces. +The purpose of these sensors is to extend the functionality or provide a +way to obfuscate the data being communicated by a sensor. Without knowing the +mapping between the data and its encapsulated form, it is difficult for +an application/driver to determine what data is being communicated by the sensor. +This allows some differentiating use cases, where vendor can provide applications. +Some common use cases are debug other sensors or to provide some events like +keyboard attached/detached or lid open/close. + +To allow application to utilize these sensors, here they are exported using sysfs +attribute groups, attributes and misc device interface. + +An example of this representation on sysfs:: + + /sys/devices/pci0000:00/INT33C2:00/i2c-0/i2c-INT33D1:00/0018:8086:09FA.0001/HID-SENSOR-2000e1.6.auto$ tree -R + . + │ ├── enable_sensor + │ │ ├── feature-0-200316 + │ │ │ ├── feature-0-200316-maximum + │ │ │ ├── feature-0-200316-minimum + │ │ │ ├── feature-0-200316-name + │ │ │ ├── feature-0-200316-size + │ │ │ ├── feature-0-200316-unit-expo + │ │ │ ├── feature-0-200316-units + │ │ │ ├── feature-0-200316-value + │ │ ├── feature-1-200201 + │ │ │ ├── feature-1-200201-maximum + │ │ │ ├── feature-1-200201-minimum + │ │ │ ├── feature-1-200201-name + │ │ │ ├── feature-1-200201-size + │ │ │ ├── feature-1-200201-unit-expo + │ │ │ ├── feature-1-200201-units + │ │ │ ├── feature-1-200201-value + │ │ ├── input-0-200201 + │ │ │ ├── input-0-200201-maximum + │ │ │ ├── input-0-200201-minimum + │ │ │ ├── input-0-200201-name + │ │ │ ├── input-0-200201-size + │ │ │ ├── input-0-200201-unit-expo + │ │ │ ├── input-0-200201-units + │ │ │ ├── input-0-200201-value + │ │ ├── input-1-200202 + │ │ │ ├── input-1-200202-maximum + │ │ │ ├── input-1-200202-minimum + │ │ │ ├── input-1-200202-name + │ │ │ ├── input-1-200202-size + │ │ │ ├── input-1-200202-unit-expo + │ │ │ ├── input-1-200202-units + │ │ │ ├── input-1-200202-value + +Here there is a custom sensor with four fields: two feature and two inputs. +Each field is represented by a set of attributes. All fields except the "value" +are read only. The value field is a read-write field. + +Example:: + + /sys/bus/platform/devices/HID-SENSOR-2000e1.6.auto/feature-0-200316$ grep -r . * + feature-0-200316-maximum:6 + feature-0-200316-minimum:0 + feature-0-200316-name:property-reporting-state + feature-0-200316-size:1 + feature-0-200316-unit-expo:0 + feature-0-200316-units:25 + feature-0-200316-value:1 + +How to enable such sensor? +^^^^^^^^^^^^^^^^^^^^^^^^^^ + +By default sensor can be power gated. To enable sysfs attribute "enable" can be +used:: + + $ echo 1 > enable_sensor + +Once enabled and powered on, sensor can report value using HID reports. +These reports are pushed using misc device interface in a FIFO order:: + + /dev$ tree | grep HID-SENSOR-2000e1.6.auto + │ │ │ ├── 10:53 -> ../HID-SENSOR-2000e1.6.auto + │ ├── HID-SENSOR-2000e1.6.auto + +Each report can be of variable length preceded by a header. This header +consists of a 32-bit usage id, 64-bit time stamp and 32-bit length field of raw +data. |