diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/livepatch/reliable-stacktrace.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/livepatch/reliable-stacktrace.rst')
-rw-r--r-- | Documentation/livepatch/reliable-stacktrace.rst | 309 |
1 files changed, 309 insertions, 0 deletions
diff --git a/Documentation/livepatch/reliable-stacktrace.rst b/Documentation/livepatch/reliable-stacktrace.rst new file mode 100644 index 000000000..67459d2ca --- /dev/null +++ b/Documentation/livepatch/reliable-stacktrace.rst @@ -0,0 +1,309 @@ +=================== +Reliable Stacktrace +=================== + +This document outlines basic information about reliable stacktracing. + +.. Table of Contents: + +.. contents:: :local: + +1. Introduction +=============== + +The kernel livepatch consistency model relies on accurately identifying which +functions may have live state and therefore may not be safe to patch. One way +to identify which functions are live is to use a stacktrace. + +Existing stacktrace code may not always give an accurate picture of all +functions with live state, and best-effort approaches which can be helpful for +debugging are unsound for livepatching. Livepatching depends on architectures +to provide a *reliable* stacktrace which ensures it never omits any live +functions from a trace. + + +2. Requirements +=============== + +Architectures must implement one of the reliable stacktrace functions. +Architectures using CONFIG_ARCH_STACKWALK must implement +'arch_stack_walk_reliable', and other architectures must implement +'save_stack_trace_tsk_reliable'. + +Principally, the reliable stacktrace function must ensure that either: + +* The trace includes all functions that the task may be returned to, and the + return code is zero to indicate that the trace is reliable. + +* The return code is non-zero to indicate that the trace is not reliable. + +.. note:: + In some cases it is legitimate to omit specific functions from the trace, + but all other functions must be reported. These cases are described in + futher detail below. + +Secondly, the reliable stacktrace function must be robust to cases where +the stack or other unwind state is corrupt or otherwise unreliable. The +function should attempt to detect such cases and return a non-zero error +code, and should not get stuck in an infinite loop or access memory in +an unsafe way. Specific cases are described in further detail below. + + +3. Compile-time analysis +======================== + +To ensure that kernel code can be correctly unwound in all cases, +architectures may need to verify that code has been compiled in a manner +expected by the unwinder. For example, an unwinder may expect that +functions manipulate the stack pointer in a limited way, or that all +functions use specific prologue and epilogue sequences. Architectures +with such requirements should verify the kernel compilation using +objtool. + +In some cases, an unwinder may require metadata to correctly unwind. +Where necessary, this metadata should be generated at build time using +objtool. + + +4. Considerations +================= + +The unwinding process varies across architectures, their respective procedure +call standards, and kernel configurations. This section describes common +details that architectures should consider. + +4.1 Identifying successful termination +-------------------------------------- + +Unwinding may terminate early for a number of reasons, including: + +* Stack or frame pointer corruption. + +* Missing unwind support for an uncommon scenario, or a bug in the unwinder. + +* Dynamically generated code (e.g. eBPF) or foreign code (e.g. EFI runtime + services) not following the conventions expected by the unwinder. + +To ensure that this does not result in functions being omitted from the trace, +even if not caught by other checks, it is strongly recommended that +architectures verify that a stacktrace ends at an expected location, e.g. + +* Within a specific function that is an entry point to the kernel. + +* At a specific location on a stack expected for a kernel entry point. + +* On a specific stack expected for a kernel entry point (e.g. if the + architecture has separate task and IRQ stacks). + +4.2 Identifying unwindable code +------------------------------- + +Unwinding typically relies on code following specific conventions (e.g. +manipulating a frame pointer), but there can be code which may not follow these +conventions and may require special handling in the unwinder, e.g. + +* Exception vectors and entry assembly. + +* Procedure Linkage Table (PLT) entries and veneer functions. + +* Trampoline assembly (e.g. ftrace, kprobes). + +* Dynamically generated code (e.g. eBPF, optprobe trampolines). + +* Foreign code (e.g. EFI runtime services). + +To ensure that such cases do not result in functions being omitted from a +trace, it is strongly recommended that architectures positively identify code +which is known to be reliable to unwind from, and reject unwinding from all +other code. + +Kernel code including modules and eBPF can be distinguished from foreign code +using '__kernel_text_address()'. Checking for this also helps to detect stack +corruption. + +There are several ways an architecture may identify kernel code which is deemed +unreliable to unwind from, e.g. + +* Placing such code into special linker sections, and rejecting unwinding from + any code in these sections. + +* Identifying specific portions of code using bounds information. + +4.3 Unwinding across interrupts and exceptions +---------------------------------------------- + +At function call boundaries the stack and other unwind state is expected to be +in a consistent state suitable for reliable unwinding, but this may not be the +case part-way through a function. For example, during a function prologue or +epilogue a frame pointer may be transiently invalid, or during the function +body the return address may be held in an arbitrary general purpose register. +For some architectures this may change at runtime as a result of dynamic +instrumentation. + +If an interrupt or other exception is taken while the stack or other unwind +state is in an inconsistent state, it may not be possible to reliably unwind, +and it may not be possible to identify whether such unwinding will be reliable. +See below for examples. + +Architectures which cannot identify when it is reliable to unwind such cases +(or where it is never reliable) must reject unwinding across exception +boundaries. Note that it may be reliable to unwind across certain +exceptions (e.g. IRQ) but unreliable to unwind across other exceptions +(e.g. NMI). + +Architectures which can identify when it is reliable to unwind such cases (or +have no such cases) should attempt to unwind across exception boundaries, as +doing so can prevent unnecessarily stalling livepatch consistency checks and +permits livepatch transitions to complete more quickly. + +4.4 Rewriting of return addresses +--------------------------------- + +Some trampolines temporarily modify the return address of a function in order +to intercept when that function returns with a return trampoline, e.g. + +* An ftrace trampoline may modify the return address so that function graph + tracing can intercept returns. + +* A kprobes (or optprobes) trampoline may modify the return address so that + kretprobes can intercept returns. + +When this happens, the original return address will not be in its usual +location. For trampolines which are not subject to live patching, where an +unwinder can reliably determine the original return address and no unwind state +is altered by the trampoline, the unwinder may report the original return +address in place of the trampoline and report this as reliable. Otherwise, an +unwinder must report these cases as unreliable. + +Special care is required when identifying the original return address, as this +information is not in a consistent location for the duration of the entry +trampoline or return trampoline. For example, considering the x86_64 +'return_to_handler' return trampoline: + +.. code-block:: none + + SYM_CODE_START(return_to_handler) + UNWIND_HINT_EMPTY + subq $24, %rsp + + /* Save the return values */ + movq %rax, (%rsp) + movq %rdx, 8(%rsp) + movq %rbp, %rdi + + call ftrace_return_to_handler + + movq %rax, %rdi + movq 8(%rsp), %rdx + movq (%rsp), %rax + addq $24, %rsp + JMP_NOSPEC rdi + SYM_CODE_END(return_to_handler) + +While the traced function runs its return address on the stack points to +the start of return_to_handler, and the original return address is stored in +the task's cur_ret_stack. During this time the unwinder can find the return +address using ftrace_graph_ret_addr(). + +When the traced function returns to return_to_handler, there is no longer a +return address on the stack, though the original return address is still stored +in the task's cur_ret_stack. Within ftrace_return_to_handler(), the original +return address is removed from cur_ret_stack and is transiently moved +arbitrarily by the compiler before being returned in rax. The return_to_handler +trampoline moves this into rdi before jumping to it. + +Architectures might not always be able to unwind such sequences, such as when +ftrace_return_to_handler() has removed the address from cur_ret_stack, and the +location of the return address cannot be reliably determined. + +It is recommended that architectures unwind cases where return_to_handler has +not yet been returned to, but architectures are not required to unwind from the +middle of return_to_handler and can report this as unreliable. Architectures +are not required to unwind from other trampolines which modify the return +address. + +4.5 Obscuring of return addresses +--------------------------------- + +Some trampolines do not rewrite the return address in order to intercept +returns, but do transiently clobber the return address or other unwind state. + +For example, the x86_64 implementation of optprobes patches the probed function +with a JMP instruction which targets the associated optprobe trampoline. When +the probe is hit, the CPU will branch to the optprobe trampoline, and the +address of the probed function is not held in any register or on the stack. + +Similarly, the arm64 implementation of DYNAMIC_FTRACE_WITH_REGS patches traced +functions with the following: + +.. code-block:: none + + MOV X9, X30 + BL <trampoline> + +The MOV saves the link register (X30) into X9 to preserve the return address +before the BL clobbers the link register and branches to the trampoline. At the +start of the trampoline, the address of the traced function is in X9 rather +than the link register as would usually be the case. + +Architectures must either ensure that unwinders either reliably unwind +such cases, or report the unwinding as unreliable. + +4.6 Link register unreliability +------------------------------- + +On some other architectures, 'call' instructions place the return address into a +link register, and 'return' instructions consume the return address from the +link register without modifying the register. On these architectures software +must save the return address to the stack prior to making a function call. Over +the duration of a function call, the return address may be held in the link +register alone, on the stack alone, or in both locations. + +Unwinders typically assume the link register is always live, but this +assumption can lead to unreliable stack traces. For example, consider the +following arm64 assembly for a simple function: + +.. code-block:: none + + function: + STP X29, X30, [SP, -16]! + MOV X29, SP + BL <other_function> + LDP X29, X30, [SP], #16 + RET + +At entry to the function, the link register (x30) points to the caller, and the +frame pointer (X29) points to the caller's frame including the caller's return +address. The first two instructions create a new stackframe and update the +frame pointer, and at this point the link register and the frame pointer both +describe this function's return address. A trace at this point may describe +this function twice, and if the function return is being traced, the unwinder +may consume two entries from the fgraph return stack rather than one entry. + +The BL invokes 'other_function' with the link register pointing to this +function's LDR and the frame pointer pointing to this function's stackframe. +When 'other_function' returns, the link register is left pointing at the BL, +and so a trace at this point could result in 'function' appearing twice in the +backtrace. + +Similarly, a function may deliberately clobber the LR, e.g. + +.. code-block:: none + + caller: + STP X29, X30, [SP, -16]! + MOV X29, SP + ADR LR, <callee> + BLR LR + LDP X29, X30, [SP], #16 + RET + +The ADR places the address of 'callee' into the LR, before the BLR branches to +this address. If a trace is made immediately after the ADR, 'callee' will +appear to be the parent of 'caller', rather than the child. + +Due to cases such as the above, it may only be possible to reliably consume a +link register value at a function call boundary. Architectures where this is +the case must reject unwinding across exception boundaries unless they can +reliably identify when the LR or stack value should be used (e.g. using +metadata generated by objtool). |