diff options
author | 2023-02-21 18:24:12 -0800 | |
---|---|---|
committer | 2023-02-21 18:24:12 -0800 | |
commit | 5b7c4cabbb65f5c469464da6c5f614cbd7f730f2 (patch) | |
tree | cc5c2d0a898769fd59549594fedb3ee6f84e59a0 /Documentation/networking/devlink/devlink-port.rst | |
download | linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.tar.gz linux-5b7c4cabbb65f5c469464da6c5f614cbd7f730f2.zip |
Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextgrafted
Pull networking updates from Jakub Kicinski:
"Core:
- Add dedicated kmem_cache for typical/small skb->head, avoid having
to access struct page at kfree time, and improve memory use.
- Introduce sysctl to set default RPS configuration for new netdevs.
- Define Netlink protocol specification format which can be used to
describe messages used by each family and auto-generate parsers.
Add tools for generating kernel data structures and uAPI headers.
- Expose all net/core sysctls inside netns.
- Remove 4s sleep in netpoll if carrier is instantly detected on
boot.
- Add configurable limit of MDB entries per port, and port-vlan.
- Continue populating drop reasons throughout the stack.
- Retire a handful of legacy Qdiscs and classifiers.
Protocols:
- Support IPv4 big TCP (TSO frames larger than 64kB).
- Add IP_LOCAL_PORT_RANGE socket option, to control local port range
on socket by socket basis.
- Track and report in procfs number of MPTCP sockets used.
- Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
manager.
- IPv6: don't check net.ipv6.route.max_size and rely on garbage
collection to free memory (similarly to IPv4).
- Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
- ICMP: add per-rate limit counters.
- Add support for user scanning requests in ieee802154.
- Remove static WEP support.
- Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
reporting.
- WiFi 7 EHT channel puncturing support (client & AP).
BPF:
- Add a rbtree data structure following the "next-gen data structure"
precedent set by recently added linked list, that is, by using
kfunc + kptr instead of adding a new BPF map type.
- Expose XDP hints via kfuncs with initial support for RX hash and
timestamp metadata.
- Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
better support decap on GRE tunnel devices not operating in collect
metadata.
- Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
- Remove the need for trace_printk_lock for bpf_trace_printk and
bpf_trace_vprintk helpers.
- Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case.
- Significantly reduce the search time for module symbols by
livepatch and BPF.
- Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs in
different time intervals.
- Add support for BPF trampoline on s390x and riscv64.
- Add capability to export the XDP features supported by the NIC.
- Add __bpf_kfunc tag for marking kernel functions as kfuncs.
- Add cgroup.memory=nobpf kernel parameter option to disable BPF
memory accounting for container environments.
Netfilter:
- Remove the CLUSTERIP target. It has been marked as obsolete for
years, and we still have WARN splats wrt races of the out-of-band
/proc interface installed by this target.
- Add 'destroy' commands to nf_tables. They are identical to the
existing 'delete' commands, but do not return an error if the
referenced object (set, chain, rule...) did not exist.
Driver API:
- Improve cpumask_local_spread() locality to help NICs set the right
IRQ affinity on AMD platforms.
- Separate C22 and C45 MDIO bus transactions more clearly.
- Introduce new DCB table to control DSCP rewrite on egress.
- Support configuration of Physical Layer Collision Avoidance (PLCA)
Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
shared medium Ethernet.
- Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
preemption of low priority frames by high priority frames.
- Add support for controlling MACSec offload using netlink SET.
- Rework devlink instance refcounts to allow registration and
de-registration under the instance lock. Split the code into
multiple files, drop some of the unnecessarily granular locks and
factor out common parts of netlink operation handling.
- Add TX frame aggregation parameters (for USB drivers).
- Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
messages with notifications for debug.
- Allow offloading of UDP NEW connections via act_ct.
- Add support for per action HW stats in TC.
- Support hardware miss to TC action (continue processing in SW from
a specific point in the action chain).
- Warn if old Wireless Extension user space interface is used with
modern cfg80211/mac80211 drivers. Do not support Wireless
Extensions for Wi-Fi 7 devices at all. Everyone should switch to
using nl80211 interface instead.
- Improve the CAN bit timing configuration. Use extack to return
error messages directly to user space, update the SJW handling,
including the definition of a new default value that will benefit
CAN-FD controllers, by increasing their oscillator tolerance.
New hardware / drivers:
- Ethernet:
- nVidia BlueField-3 support (control traffic driver)
- Ethernet support for imx93 SoCs
- Motorcomm yt8531 gigabit Ethernet PHY
- onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
- Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
- Amlogic gxl MDIO mux
- WiFi:
- RealTek RTL8188EU (rtl8xxxu)
- Qualcomm Wi-Fi 7 devices (ath12k)
- CAN:
- Renesas R-Car V4H
Drivers:
- Bluetooth:
- Set Per Platform Antenna Gain (PPAG) for Intel controllers.
- Ethernet NICs:
- Intel (1G, igc):
- support TSN / Qbv / packet scheduling features of i226 model
- Intel (100G, ice):
- use GNSS subsystem instead of TTY
- multi-buffer XDP support
- extend support for GPIO pins to E823 devices
- nVidia/Mellanox:
- update the shared buffer configuration on PFC commands
- implement PTP adjphase function for HW offset control
- TC support for Geneve and GRE with VF tunnel offload
- more efficient crypto key management method
- multi-port eswitch support
- Netronome/Corigine:
- add DCB IEEE support
- support IPsec offloading for NFP3800
- Freescale/NXP (enetc):
- support XDP_REDIRECT for XDP non-linear buffers
- improve reconfig, avoid link flap and waiting for idle
- support MAC Merge layer
- Other NICs:
- sfc/ef100: add basic devlink support for ef100
- ionic: rx_push mode operation (writing descriptors via MMIO)
- bnxt: use the auxiliary bus abstraction for RDMA
- r8169: disable ASPM and reset bus in case of tx timeout
- cpsw: support QSGMII mode for J721e CPSW9G
- cpts: support pulse-per-second output
- ngbe: add an mdio bus driver
- usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
- r8152: handle devices with FW with NCM support
- amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
- virtio-net: support multi buffer XDP
- virtio/vsock: replace virtio_vsock_pkt with sk_buff
- tsnep: XDP support
- Ethernet high-speed switches:
- nVidia/Mellanox (mlxsw):
- add support for latency TLV (in FW control messages)
- Microchip (sparx5):
- separate explicit and implicit traffic forwarding rules, make
the implicit rules always active
- add support for egress DSCP rewrite
- IS0 VCAP support (Ingress Classification)
- IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
etc.)
- ES2 VCAP support (Egress Access Control)
- support for Per-Stream Filtering and Policing (802.1Q,
8.6.5.1)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- add MAB (port auth) offload support
- enable PTP receive for mv88e6390
- NXP (ocelot):
- support MAC Merge layer
- support for the the vsc7512 internal copper phys
- Microchip:
- lan9303: convert to PHYLINK
- lan966x: support TC flower filter statistics
- lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
- lan937x: support Credit Based Shaper configuration
- ksz9477: support Energy Efficient Ethernet
- other:
- qca8k: convert to regmap read/write API, use bulk operations
- rswitch: Improve TX timestamp accuracy
- Intel WiFi (iwlwifi):
- EHT (Wi-Fi 7) rate reporting
- STEP equalizer support: transfer some STEP (connection to radio
on platforms with integrated wifi) related parameters from the
BIOS to the firmware.
- Qualcomm 802.11ax WiFi (ath11k):
- IPQ5018 support
- Fine Timing Measurement (FTM) responder role support
- channel 177 support
- MediaTek WiFi (mt76):
- per-PHY LED support
- mt7996: EHT (Wi-Fi 7) support
- Wireless Ethernet Dispatch (WED) reset support
- switch to using page pool allocator
- RealTek WiFi (rtw89):
- support new version of Bluetooth co-existance
- Mobile:
- rmnet: support TX aggregation"
* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
page_pool: add a comment explaining the fragment counter usage
net: ethtool: fix __ethtool_dev_mm_supported() implementation
ethtool: pse-pd: Fix double word in comments
xsk: add linux/vmalloc.h to xsk.c
sefltests: netdevsim: wait for devlink instance after netns removal
selftest: fib_tests: Always cleanup before exit
net/mlx5e: Align IPsec ASO result memory to be as required by hardware
net/mlx5e: TC, Set CT miss to the specific ct action instance
net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
net/mlx5: Refactor tc miss handling to a single function
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
net/sched: flower: Support hardware miss to tc action
net/sched: flower: Move filter handle initialization earlier
net/sched: cls_api: Support hardware miss to tc action
net/sched: Rename user cookie and act cookie
sfc: fix builds without CONFIG_RTC_LIB
sfc: clean up some inconsistent indentings
net/mlx4_en: Introduce flexible array to silence overflow warning
net: lan966x: Fix possible deadlock inside PTP
net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
...
Diffstat (limited to 'Documentation/networking/devlink/devlink-port.rst')
-rw-r--r-- | Documentation/networking/devlink/devlink-port.rst | 388 |
1 files changed, 388 insertions, 0 deletions
diff --git a/Documentation/networking/devlink/devlink-port.rst b/Documentation/networking/devlink/devlink-port.rst new file mode 100644 index 000000000..3da590953 --- /dev/null +++ b/Documentation/networking/devlink/devlink-port.rst @@ -0,0 +1,388 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. _devlink_port: + +============ +Devlink Port +============ + +``devlink-port`` is a port that exists on the device. It has a logically +separate ingress/egress point of the device. A devlink port can be any one +of many flavours. A devlink port flavour along with port attributes +describe what a port represents. + +A device driver that intends to publish a devlink port sets the +devlink port attributes and registers the devlink port. + +Devlink port flavours are described below. + +.. list-table:: List of devlink port flavours + :widths: 33 90 + + * - Flavour + - Description + * - ``DEVLINK_PORT_FLAVOUR_PHYSICAL`` + - Any kind of physical port. This can be an eswitch physical port or any + other physical port on the device. + * - ``DEVLINK_PORT_FLAVOUR_DSA`` + - This indicates a DSA interconnect port. + * - ``DEVLINK_PORT_FLAVOUR_CPU`` + - This indicates a CPU port applicable only to DSA. + * - ``DEVLINK_PORT_FLAVOUR_PCI_PF`` + - This indicates an eswitch port representing a port of PCI + physical function (PF). + * - ``DEVLINK_PORT_FLAVOUR_PCI_VF`` + - This indicates an eswitch port representing a port of PCI + virtual function (VF). + * - ``DEVLINK_PORT_FLAVOUR_PCI_SF`` + - This indicates an eswitch port representing a port of PCI + subfunction (SF). + * - ``DEVLINK_PORT_FLAVOUR_VIRTUAL`` + - This indicates a virtual port for the PCI virtual function. + +Devlink port can have a different type based on the link layer described below. + +.. list-table:: List of devlink port types + :widths: 23 90 + + * - Type + - Description + * - ``DEVLINK_PORT_TYPE_ETH`` + - Driver should set this port type when a link layer of the port is + Ethernet. + * - ``DEVLINK_PORT_TYPE_IB`` + - Driver should set this port type when a link layer of the port is + InfiniBand. + * - ``DEVLINK_PORT_TYPE_AUTO`` + - This type is indicated by the user when driver should detect the port + type automatically. + +PCI controllers +--------------- +In most cases a PCI device has only one controller. A controller consists of +potentially multiple physical, virtual functions and subfunctions. A function +consists of one or more ports. This port is represented by the devlink eswitch +port. + +A PCI device connected to multiple CPUs or multiple PCI root complexes or a +SmartNIC, however, may have multiple controllers. For a device with multiple +controllers, each controller is distinguished by a unique controller number. +An eswitch is on the PCI device which supports ports of multiple controllers. + +An example view of a system with two controllers:: + + --------------------------------------------------------- + | | + | --------- --------- ------- ------- | + ----------- | | vf(s) | | sf(s) | |vf(s)| |sf(s)| | + | server | | ------- ----/---- ---/----- ------- ---/--- ---/--- | + | pci rc |=== | pf0 |______/________/ | pf1 |___/_______/ | + | connect | | ------- ------- | + ----------- | | controller_num=1 (no eswitch) | + ------|-------------------------------------------------- + (internal wire) + | + --------------------------------------------------------- + | devlink eswitch ports and reps | + | ----------------------------------------------------- | + | |ctrl-0 | ctrl-0 | ctrl-0 | ctrl-0 | ctrl-0 |ctrl-0 | | + | |pf0 | pf0vfN | pf0sfN | pf1 | pf1vfN |pf1sfN | | + | ----------------------------------------------------- | + | |ctrl-1 | ctrl-1 | ctrl-1 | ctrl-1 | ctrl-1 |ctrl-1 | | + | |pf0 | pf0vfN | pf0sfN | pf1 | pf1vfN |pf1sfN | | + | ----------------------------------------------------- | + | | + | | + ----------- | --------- --------- ------- ------- | + | smartNIC| | | vf(s) | | sf(s) | |vf(s)| |sf(s)| | + | pci rc |==| ------- ----/---- ---/----- ------- ---/--- ---/--- | + | connect | | | pf0 |______/________/ | pf1 |___/_______/ | + ----------- | ------- ------- | + | | + | local controller_num=0 (eswitch) | + --------------------------------------------------------- + +In the above example, the external controller (identified by controller number = 1) +doesn't have the eswitch. Local controller (identified by controller number = 0) +has the eswitch. The Devlink instance on the local controller has eswitch +devlink ports for both the controllers. + +Function configuration +====================== + +Users can configure one or more function attributes before enumerating the PCI +function. Usually it means, user should configure function attribute +before a bus specific device for the function is created. However, when +SRIOV is enabled, virtual function devices are created on the PCI bus. +Hence, function attribute should be configured before binding virtual +function device to the driver. For subfunctions, this means user should +configure port function attribute before activating the port function. + +A user may set the hardware address of the function using +`devlink port function set hw_addr` command. For Ethernet port function +this means a MAC address. + +Users may also set the RoCE capability of the function using +`devlink port function set roce` command. + +Users may also set the function as migratable using +'devlink port function set migratable' command. + +Function attributes +=================== + +MAC address setup +----------------- +The configured MAC address of the PCI VF/SF will be used by netdevice and rdma +device created for the PCI VF/SF. + +- Get the MAC address of the VF identified by its unique devlink port index:: + + $ devlink port show pci/0000:06:00.0/2 + pci/0000:06:00.0/2: type eth netdev enp6s0pf0vf1 flavour pcivf pfnum 0 vfnum 1 + function: + hw_addr 00:00:00:00:00:00 + +- Set the MAC address of the VF identified by its unique devlink port index:: + + $ devlink port function set pci/0000:06:00.0/2 hw_addr 00:11:22:33:44:55 + + $ devlink port show pci/0000:06:00.0/2 + pci/0000:06:00.0/2: type eth netdev enp6s0pf0vf1 flavour pcivf pfnum 0 vfnum 1 + function: + hw_addr 00:11:22:33:44:55 + +- Get the MAC address of the SF identified by its unique devlink port index:: + + $ devlink port show pci/0000:06:00.0/32768 + pci/0000:06:00.0/32768: type eth netdev enp6s0pf0sf88 flavour pcisf pfnum 0 sfnum 88 + function: + hw_addr 00:00:00:00:00:00 + +- Set the MAC address of the SF identified by its unique devlink port index:: + + $ devlink port function set pci/0000:06:00.0/32768 hw_addr 00:00:00:00:88:88 + + $ devlink port show pci/0000:06:00.0/32768 + pci/0000:06:00.0/32768: type eth netdev enp6s0pf0sf88 flavour pcisf pfnum 0 sfnum 88 + function: + hw_addr 00:00:00:00:88:88 + +RoCE capability setup +--------------------- +Not all PCI VFs/SFs require RoCE capability. + +When RoCE capability is disabled, it saves system memory per PCI VF/SF. + +When user disables RoCE capability for a VF/SF, user application cannot send or +receive any RoCE packets through this VF/SF and RoCE GID table for this PCI +will be empty. + +When RoCE capability is disabled in the device using port function attribute, +VF/SF driver cannot override it. + +- Get RoCE capability of the VF device:: + + $ devlink port show pci/0000:06:00.0/2 + pci/0000:06:00.0/2: type eth netdev enp6s0pf0vf1 flavour pcivf pfnum 0 vfnum 1 + function: + hw_addr 00:00:00:00:00:00 roce enable + +- Set RoCE capability of the VF device:: + + $ devlink port function set pci/0000:06:00.0/2 roce disable + + $ devlink port show pci/0000:06:00.0/2 + pci/0000:06:00.0/2: type eth netdev enp6s0pf0vf1 flavour pcivf pfnum 0 vfnum 1 + function: + hw_addr 00:00:00:00:00:00 roce disable + +migratable capability setup +--------------------------- +Live migration is the process of transferring a live virtual machine +from one physical host to another without disrupting its normal +operation. + +User who want PCI VFs to be able to perform live migration need to +explicitly enable the VF migratable capability. + +When user enables migratable capability for a VF, and the HV binds the VF to VFIO driver +with migration support, the user can migrate the VM with this VF from one HV to a +different one. + +However, when migratable capability is enable, device will disable features which cannot +be migrated. Thus migratable cap can impose limitations on a VF so let the user decide. + +Example of LM with migratable function configuration: +- Get migratable capability of the VF device:: + + $ devlink port show pci/0000:06:00.0/2 + pci/0000:06:00.0/2: type eth netdev enp6s0pf0vf1 flavour pcivf pfnum 0 vfnum 1 + function: + hw_addr 00:00:00:00:00:00 migratable disable + +- Set migratable capability of the VF device:: + + $ devlink port function set pci/0000:06:00.0/2 migratable enable + + $ devlink port show pci/0000:06:00.0/2 + pci/0000:06:00.0/2: type eth netdev enp6s0pf0vf1 flavour pcivf pfnum 0 vfnum 1 + function: + hw_addr 00:00:00:00:00:00 migratable enable + +- Bind VF to VFIO driver with migration support:: + + $ echo <pci_id> > /sys/bus/pci/devices/0000:08:00.0/driver/unbind + $ echo mlx5_vfio_pci > /sys/bus/pci/devices/0000:08:00.0/driver_override + $ echo <pci_id> > /sys/bus/pci/devices/0000:08:00.0/driver/bind + +Attach VF to the VM. +Start the VM. +Perform live migration. + +Subfunction +============ + +Subfunction is a lightweight function that has a parent PCI function on which +it is deployed. Subfunction is created and deployed in unit of 1. Unlike +SRIOV VFs, a subfunction doesn't require its own PCI virtual function. +A subfunction communicates with the hardware through the parent PCI function. + +To use a subfunction, 3 steps setup sequence is followed: + +1) create - create a subfunction; +2) configure - configure subfunction attributes; +3) deploy - deploy the subfunction; + +Subfunction management is done using devlink port user interface. +User performs setup on the subfunction management device. + +(1) Create +---------- +A subfunction is created using a devlink port interface. A user adds the +subfunction by adding a devlink port of subfunction flavour. The devlink +kernel code calls down to subfunction management driver (devlink ops) and asks +it to create a subfunction devlink port. Driver then instantiates the +subfunction port and any associated objects such as health reporters and +representor netdevice. + +(2) Configure +------------- +A subfunction devlink port is created but it is not active yet. That means the +entities are created on devlink side, the e-switch port representor is created, +but the subfunction device itself is not created. A user might use e-switch port +representor to do settings, putting it into bridge, adding TC rules, etc. A user +might as well configure the hardware address (such as MAC address) of the +subfunction while subfunction is inactive. + +(3) Deploy +---------- +Once a subfunction is configured, user must activate it to use it. Upon +activation, subfunction management driver asks the subfunction management +device to instantiate the subfunction device on particular PCI function. +A subfunction device is created on the :ref:`Documentation/driver-api/auxiliary_bus.rst <auxiliary_bus>`. +At this point a matching subfunction driver binds to the subfunction's auxiliary device. + +Rate object management +====================== + +Devlink provides API to manage tx rates of single devlink port or a group. +This is done through rate objects, which can be one of the two types: + +``leaf`` + Represents a single devlink port; created/destroyed by the driver. Since leaf + have 1to1 mapping to its devlink port, in user space it is referred as + ``pci/<bus_addr>/<port_index>``; + +``node`` + Represents a group of rate objects (leafs and/or nodes); created/deleted by + request from the userspace; initially empty (no rate objects added). In + userspace it is referred as ``pci/<bus_addr>/<node_name>``, where + ``node_name`` can be any identifier, except decimal number, to avoid + collisions with leafs. + +API allows to configure following rate object's parameters: + +``tx_share`` + Minimum TX rate value shared among all other rate objects, or rate objects + that parts of the parent group, if it is a part of the same group. + +``tx_max`` + Maximum TX rate value. + +``tx_priority`` + Allows for usage of strict priority arbiter among siblings. This + arbitration scheme attempts to schedule nodes based on their priority + as long as the nodes remain within their bandwidth limit. The higher the + priority the higher the probability that the node will get selected for + scheduling. + +``tx_weight`` + Allows for usage of Weighted Fair Queuing arbitration scheme among + siblings. This arbitration scheme can be used simultaneously with the + strict priority. As a node is configured with a higher rate it gets more + BW relative to it's siblings. Values are relative like a percentage + points, they basically tell how much BW should node take relative to + it's siblings. + +``parent`` + Parent node name. Parent node rate limits are considered as additional limits + to all node children limits. ``tx_max`` is an upper limit for children. + ``tx_share`` is a total bandwidth distributed among children. + +``tx_priority`` and ``tx_weight`` can be used simultaneously. In that case +nodes with the same priority form a WFQ subgroup in the sibling group +and arbitration among them is based on assigned weights. + +Arbitration flow from the high level: + +#. Choose a node, or group of nodes with the highest priority that stays + within the BW limit and are not blocked. Use ``tx_priority`` as a + parameter for this arbitration. + +#. If group of nodes have the same priority perform WFQ arbitration on + that subgroup. Use ``tx_weight`` as a parameter for this arbitration. + +#. Select the winner node, and continue arbitration flow among it's children, + until leaf node is reached, and the winner is established. + +#. If all the nodes from the highest priority sub-group are satisfied, or + overused their assigned BW, move to the lower priority nodes. + +Driver implementations are allowed to support both or either rate object types +and setting methods of their parameters. Additionally driver implementation +may export nodes/leafs and their child-parent relationships. + +Terms and Definitions +===================== + +.. list-table:: Terms and Definitions + :widths: 22 90 + + * - Term + - Definitions + * - ``PCI device`` + - A physical PCI device having one or more PCI buses consists of one or + more PCI controllers. + * - ``PCI controller`` + - A controller consists of potentially multiple physical functions, + virtual functions and subfunctions. + * - ``Port function`` + - An object to manage the function of a port. + * - ``Subfunction`` + - A lightweight function that has parent PCI function on which it is + deployed. + * - ``Subfunction device`` + - A bus device of the subfunction, usually on a auxiliary bus. + * - ``Subfunction driver`` + - A device driver for the subfunction auxiliary device. + * - ``Subfunction management device`` + - A PCI physical function that supports subfunction management. + * - ``Subfunction management driver`` + - A device driver for PCI physical function that supports + subfunction management using devlink port interface. + * - ``Subfunction host driver`` + - A device driver for PCI physical function that hosts subfunction + devices. In most cases it is same as subfunction management driver. When + subfunction is used on external controller, subfunction management and + host drivers are different. |